Conventional chemotherapy can effectively treat the symptom of cancer initially, but its efficacy is often compromised by late tumor relapse. Many chemotherapeutic agents are shown to have immunostimulatory effects, and these findings drive a growing interest in combining chemotherapy and immunotherapy for synergistic antitumor effects and improved clinical outcomes. The goal of this project is to understand how antitumor CD4 effector T cells can be utilized to activate host immunity and prevent tumor re-growth after chemotherapy. Our central hypothesis is that successful tumor eradication after chemotherapy is attainable only if highly activated polyfunctional CD4 effector T cells can be created and maintained. The significance of the study is that it identifies antitumor CD4 effector T cells as a key """"""""gatekeeper"""""""" of the overall host immunity, whose functional status (polyfunctional vs. tolerized) fundamentally drives the choice between eradication versus re-growth of residual tumors. The proposed project focuses on developing strategies to induce and maintain polyfunctional CD4 effector T cells in the post-chemotherapy immune milieu, and sustain the productive engagement of these cells with other immune cells to mount durable antitumor responses. We will attain these objectives by pursuing three highly-integrated specific aims.
In aim 1, we will elucidate how type I IFN activates antigen-presenting cells, and acts in concert with IL7 to confer polyfunctional effector properties to CD4 T cells in the post-chemotherapy window.
In aim 2, we will investigate the mechanisms of action of antitumor CD4 effector T cells in modifying the tumor milieu and driving effective CD8 responses. We will also elucidate the intrinsic (PD1) and extrinsic (Treg) inhibitory mechanisms that limit the durable effectiveness of CD4 effector T cells.
In aim 3, we will translate the mechanistic insights from aims 1 and 2 into a combinatorial therapeutic strategy that targets mutually-reinforcing immune pathways, including CD40 ligation, PD1 blockade and provision of exogenous IL7, all of which converge to achieve a durable polyfunctional CD4 response and lasting antitumor immunity. Successful completion of this project will provide mechanistic basis for the design and implementation of effective combination chemoimmunotherapies for various cancers.

Public Health Relevance

One of the most common problems in cancer patients who choose to undergo conventional chemotherapy is tumor recurrence. This project will elucidate the critical role of CD4 effector T cells in controlling host antitumor immunity after chemotherapy. This may lead to the development of curative chemoimmunotherapy strategies that capitalize on the potential of tumor-reactive CD4 T cells.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA158202-03
Application #
8716537
Study Section
Cancer Immunopathology and Immunotherapy Study Section (CII)
Program Officer
Yovandich, Jason L
Project Start
2012-09-01
Project End
2017-08-31
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Georgia Regents University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
City
Augusta
State
GA
Country
United States
Zip Code
30912
Habtetsion, Tsadik; Ding, Zhi-Chun; Pi, Wenhu et al. (2018) Alteration of Tumor Metabolism by CD4+ T Cells Leads to TNF-?-Dependent Intensification of Oxidative Stress and Tumor Cell Death. Cell Metab 28:228-242.e6
Ding, Zhi-Chun; Habtetsion, Tsadik; Cao, Yang et al. (2017) Adjuvant IL-7 potentiates adoptive T cell therapy by amplifying and sustaining polyfunctional antitumor CD4+ T cells. Sci Rep 7:12168
Kuczma, Michal P; Ding, Zhi-Chun; Li, Tao et al. (2017) The impact of antibiotic usage on the efficacy of chemoimmunotherapy is contingent on the source of tumor-reactive T cells. Oncotarget 8:111931-111942
Kuczma, Michal; Ding, Zhi-Chun; Zhou, Gang (2016) Immunostimulatory Effects of Melphalan and Usefulness in Adoptive Cell Therapy with Antitumor CD4+ T Cells. Crit Rev Immunol 36:179-191
Ding, Zhi-Chun; Liu, Chufeng; Cao, Yang et al. (2016) IL-7 signaling imparts polyfunctionality and stemness potential to CD4(+) T cells. Oncoimmunology 5:e1171445
Paschall, Amy V; Zhang, Ruihua; Qi, Chen-Feng et al. (2015) IFN regulatory factor 8 represses GM-CSF expression in T cells to affect myeloid cell lineage differentiation. J Immunol 194:2369-79
Lu, Xiaoyun; Ding, Zhi-Chun; Cao, Yang et al. (2015) Alkylating agent melphalan augments the efficacy of adoptive immunotherapy using tumor-specific CD4+ T cells. J Immunol 194:2011-21
Wei, Jin-xing; Lv, Li-hong; Wan, Yun-le et al. (2015) Vps4A functions as a tumor suppressor by regulating the secretion and uptake of exosomal microRNAs in human hepatoma cells. Hepatology 61:1284-94
Luo, Liqun; Zhu, Gefeng; Xu, Haiying et al. (2015) B7-H3 Promotes Pathogenesis of Autoimmune Disease and Inflammation by Regulating the Activity of Different T Cell Subsets. PLoS One 10:e0130126
Cui, Hongmei; Guo, Mingxiong; Xu, Dong et al. (2015) The stress-responsive gene ATF3 regulates the histone acetyltransferase Tip60. Nat Commun 6:6752

Showing the most recent 10 out of 16 publications