Three major contributors to therapeutic resistance that have been difficult to overcome in pancreatic cancer (PDAC) are mutations in the KRAS oncogene, the presence of a dense desmoplastic stroma that acts as a barrier to drug delivery and effector immune cell infiltration, and the immunosuppressive tumor microenvironment (TME) that renders the tumor ineffective to immunotherapy. Our efforts at targeting downstream effectors of oncogenic RAS, have shown that MEK inhibition (MEKi) results in reciprocal activation of STAT3 signaling, which confers therapeutic resistance and continued PDAC cell growth. Combined inhibition of JAK/STAT3 (STAT3i) and MEKi overcomes therapeutic resistance following RAS inhibition that is mediated through parallel feedback loop activation. We have now identified a novel mechanism showing that combined MEKi and STAT3i also inhibits tumor fibrosis and enhances CD8+ cytotoxic T cell (CTL) infiltration to the tumor while downregulating immunosuppressive regulatory T cells (Tregs) and myeloid derived suppressor cells (MDSCs) in the TME, resulting in reduced tumor burden and improved survival in genetically engineered mouse models (GEMs) of PDAC. In addition, we show that the tumor suppressive effects of MEKi and STAT3i are T cell dependent. This change in the TME, however, is accompanied by sustained PD-L1/PD-1 and CTLA-4 expression. Our preliminary results further show that combined MEKi and STAT3i with PD-1 inhibition can harness the effects of immune checkpoint inhibitors for an enhanced anti-tumor response. Therapeutic strategies that reprogram the tumor stroma to activate T-cell anti-tumor immunity and reverse immune tolerance are of paramount importance as they have the potential to revolutionize treatment for pancreatic cancer and improve clinical outcomes. Our central hypothesis is that MEKi and STAT3i will reprogram cellular components of the PDAC TME to stimulate infiltration of CD8+ CTLs and overcome the immunosuppressive milieu of PDAC to enhance the effects of checkpoint inhibition (CPI) for a durable and sustained anti-tumor response. This will be proven by the following specific aims:
Aim 1 : Determine if checkpoint inhibition with MEKi and STAT3i will improve survival in GEMs of PDAC. Safety and efficacy of MEKi/STAT3i and anti-PD1 and/or anti-CTLA-4 antibodies treatment response will be determined in two different GEMs of PDAC.
Aim 2 : Determine if changes in the stromal and immune microenvironment induced by MEKi/STAT3i and checkpoint inhibition result in a durable and sustained anti-tumor immune response in PDAC in vivo. In this aim, multiplex flow cytometry will be used to detect the changes in the cell types and activation phenotypes to determine if the differences pre- and post-treatment predict response.
Aim 3 : Determine the effects of PDAC cell specific and CAFs specific knockdown of MEK and/or STAT3 signaling on changes in the stromal and immune microenvironment in PDAC.
This aim will elucidate the mechanism of cell-specific knockdown of MEK and/or STAT3 mediated changes in that result in increased infiltration CD8+ T cells and suppression of suppressive MDSCs and Tregs. This work will not only evaluate a novel treatment strategy for PDAC, but may uncover potential biomarkers of response to checkpoint inhibitors.

Public Health Relevance

Interactions between stromal cells, immune cells and tumor cells in the tumor microenvironment of pancreatic cancer promote chemoresistance and an immunosuppressive microenvironment supporting cancer growth. Therapeutic strategies that reprogram the tumor stroma to activate T-cell anti-tumor immunity and reverse immune tolerance to enhance the effects of checkpoint inhibition will be essential to develop strategies for durable cancer remission.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA161976-08
Application #
9856969
Study Section
Cancer Immunopathology and Immunotherapy Study Section (CII)
Program Officer
Sommers, Connie L
Project Start
2012-04-01
Project End
2023-01-31
Budget Start
2020-02-01
Budget End
2021-01-31
Support Year
8
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Miami School of Medicine
Department
Surgery
Type
Schools of Medicine
DUNS #
052780918
City
Coral Gables
State
FL
Country
United States
Zip Code
33146
Cardin, Dana B; Goff, Laura W; Chan, Emily et al. (2018) Dual Src and EGFR inhibition in combination with gemcitabine in advanced pancreatic cancer: phase I results : A phase I clinical trial. Invest New Drugs 36:442-450
Totiger, Tulasigeri M; Srinivasan, Supriya; Jala, Venkatakrishna R et al. (2018) Urolithin A, a novel natural compound to target PI3K/AKT/mTOR pathway in pancreatic cancer. Mol Cancer Ther :
Nagathihalli, Nagaraj S; Castellanos, Jason A; Lamichhane, Purushottam et al. (2018) Inverse Correlation of STAT3 and MEK Signaling Mediates Resistance to RAS Pathway Inhibition in Pancreatic Cancer. Cancer Res 78:6235-6246
Srinivasan, Supriya; Totiger, Tulasigeri; Shi, Chanjuan et al. (2018) Tobacco Carcinogen-Induced Production of GM-CSF Activates CREB to Promote Pancreatic Cancer. Cancer Res 78:6146-6158
Messaggio, Fanuel; Mendonsa, Alisha M; Castellanos, Jason et al. (2017) Adiponectin receptor agonists inhibit leptin induced pSTAT3 and in vivo pancreatic tumor growth. Oncotarget 8:85378-85391
Walsh, Alex J; Castellanos, Jason A; Nagathihalli, Nagaraj S et al. (2016) Optical Imaging of Drug-Induced Metabolism Changes in Murine and Human Pancreatic Cancer Organoids Reveals Heterogeneous Drug Response. Pancreas 45:863-9
Nagathihalli, Nagaraj S; Castellanos, Jason A; VanSaun, Michael N et al. (2016) Pancreatic stellate cell secreted IL-6 stimulates STAT3 dependent invasiveness of pancreatic intraepithelial neoplasia and cancer cells. Oncotarget 7:65982-65992
Nagathihalli, Nagaraj S; Castellanos, Jason A; Shi, Chanjuan et al. (2015) Signal Transducer and Activator of Transcription 3, Mediated Remodeling of the Tumor Microenvironment Results in Enhanced Tumor Drug Delivery in a Mouse Model of Pancreatic Cancer. Gastroenterology 149:1932-1943.e9
Johnson, Adam; Wright, Jesse P; Zhao, Zhiguo et al. (2015) Cadherin 17 is frequently expressed by 'sclerosing variant' pancreatic neuroendocrine tumour. Histopathology 66:225-33
Castellanos, Jason A; Merchant, Nipun B (2014) Intensity of follow-up after pancreatic cancer resection. Ann Surg Oncol 21:747-51

Showing the most recent 10 out of 18 publications