The overall goal of this academic-industrial partnership between researchers at Johns Hopkins University and Philips Healthcare/Philips Research is to develop and optimize the novel amide proton transfer (APT) imaging technique for efficient and reliable detection of malignant brain tumors and assessment of treatment response. APT imaging can provide endogenous contrast related to mobile protein content in tissue. Preclinical studies and clinical data suggest that APT imaging may provide unique information about the presence and grade of brain tumors, as revealed by MRI-guided proteomics and in vivo MR spectroscopy. Notably, we recently demonstrated in animal models that the APT-MRI signal is a unique imaging biomarker to distinguish between radiation necrosis and active tumor tissue. Similar to other MRI techniques, the ultimate goal for APT imaging is the standardized use in a clinical setting. However, current APT imaging protocols are far from being optimized. A main reason is that the APT experimental parameters are often limited by scanner hardware constraints, particularly with respect to amplifier duty-cycle and specific absorption rate requirements. In addition to pulse sequence parameter differences, leading to inconsistent effect sizes, data processing strategies vary and may affect the reproducibility of results between hospitals. Therefore, there is an urgent need for industry and academia to work together to develop this emerging technology into a clinically viable, easy-to-use, and reproducible approach. To accomplish this, we (researchers at JHU and Philips) agreed to establish a cooperation to achieve an accelerated APT translation. Together, we formulated the following two specific aims: (1) Optimize and standardize APT imaging technology on 3T human MRI systems;and (2) Test the methodologies developed in Aim 1 on patients with brain tumors. APT imaging has the potential to introduce an entirely new molecular MRI methodology into the clinic that can detect endogenous cellular protein signals in biological tissue non-invasively. Thi research will provide the standard optimized approaches required to translate this new technology into the clinic.

Public Health Relevance

The overall goal of this academic-industrial partnership is to optimize a novel MR molecular imaging technique, called amide proton transfer imaging, for efficient and reliable detection of malignant brain tumors on 3T human MRI scanners. If successful, we expect to provide an entirely new and optimized whole-brain imaging technology that can reliably identify the spatial extent of high grade tumors non-invasively, for both contras-enhancing and non-enhancing gliomas. This specific MRI modality is expected to aid in the diagnosis and treatment of brain tumors, directly impacting patient care.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Zhang, Huiming
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
Schools of Medicine
United States
Zip Code
Joo, Bio; Han, Kyunghwa; Choi, Yoon Seong et al. (2018) Amide proton transfer imaging for differentiation of benign and atypical meningiomas. Eur Radiol 28:331-339
Sun, Hongzan; Xin, Jun; Zhou, Jinyuan et al. (2018) Applying Amide Proton Transfer MR Imaging to Hybrid Brain PET/MR: Concordance with Gadolinium Enhancement and Added Value to [18F]FDG PET. Mol Imaging Biol 20:473-481
Jiang, Shanshan; Rui, Qihong; Wang, Yu et al. (2018) Discriminating MGMT promoter methylation status in patients with glioblastoma employing amide proton transfer-weighted MRI metrics. Eur Radiol 28:2115-2123
Jiang, Shanshan; Eberhart, Charles G; Lim, Michael et al. (2018) Identifying Recurrent Malignant Glioma after Treatment Using Amide Proton Transfer-Weighted MR Imaging: A Validation Study with Image-Guided Stereotactic Biopsy. Clin Cancer Res :
Zou, Tianyu; Yu, Hao; Jiang, Chunxiu et al. (2018) Differentiating the histologic grades of gliomas preoperatively using amide proton transfer-weighted (APTW) and intravoxel incoherent motion MRI. NMR Biomed 31:
Zhang, Yi; Liu, Xiaoyang; Zhou, Jinyuan et al. (2018) Ultrafast compartmentalized relaxation time mapping with linear algebraic modeling. Magn Reson Med 79:286-297
Zhang, Yi; Liu, Xiaoyang; Zhou, Jinyuan et al. (2017) Ultrafast compartmental relaxation time mapping with linear algebraic modeling. Proc Int Soc Magn Reson Med Sci Meet Exhib Int Soc Magn Reson M 25:0071
Jiang, Shanshan; Eberhart, Charles G; Zhang, Yi et al. (2017) Amide proton transfer-weighted magnetic resonance image-guided stereotactic biopsy in patients with newly diagnosed gliomas. Eur J Cancer 83:9-18
Zhang, Yi; Heo, Hye-Young; Lee, Dong-Hoon et al. (2017) Chemical exchange saturation transfer (CEST) imaging with fast variably-accelerated sensitivity encoding (vSENSE). Magn Reson Med 77:2225-2238
Choi, Yoon Seong; Ahn, Sung Soo; Lee, Seung-Koo et al. (2017) Amide proton transfer imaging to discriminate between low- and high-grade gliomas: added value to apparent diffusion coefficient and relative cerebral blood volume. Eur Radiol 27:3181-3189

Showing the most recent 10 out of 50 publications