Pituitary adenomas are the most frequent of all pituitary diseases and are observed in both sexes. The prevalence is estimated as ~90 cases per 105 people. The majority arises from the gonadotrope lineage and these tumors do not hypersecrete glycoprotein hormones [i.e., luteinizing hormone (LH) and follicle stimulating hormone (FSH)] and thus are called null cell adenomas. The clinical manifestations include neurological symptoms such as damage to brain tissue and optic chiasm, vision loss, increased intracranial pressure, persistent headache and nausea. Because they have no well-defined diagnostic markers, null cell adenomas often go undetected until they are very advanced and surgery is the only treatment. There are no established model systems or chemoprevention options available for null cell adenomas. We have developed a unique transgenic strain of mice that develops gonadotrope-enriched pituitary adenomas and phenocopies human pituitary null cell adenomas including. Our long-term goal is to understand the mechanisms of origin and progression of null cell adenoma, and develop new strategies of chemoprevention for it. The objective of this proposal is to identify biomarkers and specific targets/pathways responsible for gonadotrope tumor progression such that mechanistic insights into progression and prevention of human null cell adenomas could ultimately be obtained. Our central hypothesis is that both estrogen receptor-1 (ESR1) and Indian hedgehog (IHH) contribute to growth of pituitary gonadotrope adenomas and inhibiting their expression leads to clinical benefit.
In Specific Aim 1, we will determine the mechanism by which estrogen signaling influences tumor growth and progression. Effects of estrogen on glycosylation that contribute to hormone secretion failure will be evaluated. Additionally, a novel mouse model in which gonadotrope tumors are fluorescently labeled will be used to identify potential biomarkers.
In Specific Aim 2, we will test the efficacyof anti-estrogen therapy to regulate gonadotrope tumor growth. The approach involves the use of mice conditionally overexpressing Esr1 at desired times, and mice lacking either Esr1 or Esr2 on the tumor-prone transgenic background. The in vivo tumor preventive effects of tamoxifen will also be tested.
In Specific Aim 3, we will determine the effects of blocking IHH action on gonadotrope tumor development. We will specifically delete Ihh in gonadotrope tumors by using a cre-lox approach. In a second approach, the effects of hedgehog chemoprevention agents will be tested in gonadotrope tumors of transgenic mice. The approach is innovative, because it utilizes a unique transgenic mouse model that develops gonadotrope tumors and uses a combination of in vitro and novel in vivo models. The proposed research is significant because it is expected to vertically advance and expand understanding of how chemopreventive agents targeted to block estrogen and hedgehog signaling regulate gonadotrope/null cell adenomas.

Public Health Relevance

The proposed research is relevant to public health because discovery of biomarkers and blockade of estrogen and hedgehog signaling pathways are ultimately expected to increase understanding of the pathogenesis of human pituitary null cell adenoma as well as provide new chemoprevention strategies for this common human pituitary disease. Thus, the proposed research is relevant to the part of NIH's mission that pertains to developing fundamental knowledge that will help to reduce the burdens of human disability.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA166557-02
Application #
8596804
Study Section
Chemo/Dietary Prevention Study Section (CDP)
Program Officer
Malone, Winfred F
Project Start
2013-01-01
Project End
2017-12-31
Budget Start
2014-01-01
Budget End
2014-12-31
Support Year
2
Fiscal Year
2014
Total Cost
$281,993
Indirect Cost
$95,243
Name
University of Kansas
Department
Physiology
Type
Schools of Medicine
DUNS #
016060860
City
Kansas City
State
KS
Country
United States
Zip Code
66160
Kumar, T Rajendra (2018) Fshb Knockout Mouse Model, Two Decades Later and Into the Future. Endocrinology 159:1941-1949
Das, Nandana; Kumar, T Rajendra (2018) Molecular regulation of follicle-stimulating hormone synthesis, secretion and action. J Mol Endocrinol 60:R131-R155
Gilbert, Sara Babcock; Roof, Allyson K; Rajendra Kumar, T (2018) Mouse models for the analysis of gonadotropin secretion and action. Best Pract Res Clin Endocrinol Metab 32:219-239
Wang, Huizhen; Hastings, Richard; Miller, William L et al. (2016) Fshb-iCre mice are efficient and specific Cre deleters for the gonadotrope lineage. Mol Cell Endocrinol 419:124-38
Kumar, T Rajendra (2016) Mouse Models for the Study of Synthesis, Secretion, and Action of Pituitary Gonadotropins. Prog Mol Biol Transl Sci 143:49-84
Wang, Huizhen; May, Jacob; Butnev, Viktor et al. (2016) Evaluation of in vivo bioactivities of recombinant hypo- (FSH21/18) and fully- (FSH24) glycosylated human FSH glycoforms in Fshb null mice. Mol Cell Endocrinol 437:224-236
Wang, Huizhen; Butnev, Vladimir; Bousfield, George R et al. (2016) A human FSHB transgene encoding the double N-glycosylation mutant (Asn(7?) Asn(24?)) FSH? subunit fails to rescue Fshb null mice. Mol Cell Endocrinol 426:113-24
Wang, Huizhen; Graham, Ian; Hastings, Richard et al. (2015) Gonadotrope-specific deletion of Dicer results in severely suppressed gonadotropins and fertility defects. J Biol Chem 290:2699-714
Kumar, T Rajendra (2014) Extragonadal FSH receptor: is it real? Biol Reprod 91:99
Wang, Huizhen; Larson, Melissa; Jablonka-Shariff, Albina et al. (2014) Redirecting intracellular trafficking and the secretion pattern of FSH dramatically enhances ovarian function in mice. Proc Natl Acad Sci U S A 111:5735-40