Environmental factors and lifestyle have profound effects in the initiation, promotion and progression of cancer. Our recent work on environmental enrichment (EE), a housing environment boosting mental health, has revealed a novel phenotype characterized by a robust reduction in adiposity, resistance to diet-induced obesity, lower leptin level, higher adiponectin level, enhanced immune functions, and marked inhibition in melanoma and colon cancer growth. One key underlying mechanism is the activation of the hypothalamic- sympathoneural-adipocyte (HSA) axis whereby the physical, social and cognitive stimulations provided in EE stimulate brain-derived neurotrophic factor (BDNF) expression in the hypothalamus leading to preferential sympathoneural activation of white fat. The elevated sympathetic drive activates adipocyte ss-adrenergic receptors inhibiting leptin expression and release, and thereby suppresses cancer growth. The long-term goal of this project is to further characterize the role of HSA axis in cancer development and progression. Specifically we propose to generalize HSA activation to additional cancer models particularly the cancers with the strongest association with obesity such as breast cancer, and evaluate its long-term preventive effects. In addition we plan to determine whether genetically activating HSA axis by BDNF gene therapy can alleviate obesity and inhibit tumor growth in melanocortin receptor 4 (MC4R) deficient mice. Moreover we will evaluate whether long-term BDNF gene therapy using an autoregulatory vector can prevent the premature mortality in MC4R mice, a model representing the most common monogenic form of obesity. These studies will further characterize the HSA axis, elucidate underlying mechanisms, identify potential therapeutic targets, and provide the preclinical data to assess the potential to ultimate clinical intervention for cancer.

Public Health Relevance

Our recent work has shown that the environmental or genetic activation of a brain-fat axis, the hypothalamic-sympathoneural-adipocyte (HSA) axis, leads to an anti-obesity and anti- cancer phenotype. The purpose of this project is to study the preventive and therapeutic effects of HSA activation in several clinical relevant models and to further elucidate the underlying mechanisms with the ultimate goal of utilizing this knowledge to develop interventions for cancer prevention and treatment.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Chemo/Dietary Prevention Study Section (CDP)
Program Officer
Malone, Winfred F
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Ohio State University
Schools of Medicine
United States
Zip Code
McMurphy, Travis; Huang, Wei; Queen, Nicholas J et al. (2018) Implementation of environmental enrichment after middle age promotes healthy aging. Aging (Albany NY) 10:1698-1721
Ng, Raymond; Hussain, Nurul Attiqah; Zhang, Qiongyi et al. (2017) miRNA-32 Drives Brown Fat Thermogenesis and Trans-activates Subcutaneous White Fat Browning in Mice. Cell Rep 19:1229-1246
Siu, J J; Queen, N J; Huang, W et al. (2017) Improved gene delivery to adult mouse spinal cord through the use of engineered hybrid adeno-associated viral serotypes. Gene Ther 24:361-369
Barth, Rolf F; Maximilian Buja, L; Cao, Lei et al. (2017) An Obesity Paradox: Increased Body Mass Index Is Associated with Decreased Aortic Atherosclerosis. Curr Hypertens Rep 19:55
Huang, Wei; Liu, Xianglan; Queen, Nicholas J et al. (2017) Targeting Visceral Fat by Intraperitoneal Delivery of Novel AAV Serotype Vector Restricting Off-Target Transduction in Liver. Mol Ther Methods Clin Dev 6:68-78
Siu, Jason J; Queen, Nicholas J; Liu, Xianglan et al. (2017) Molecular Therapy of Melanocortin-4-Receptor Obesity by an Autoregulatory BDNF Vector. Mol Ther Methods Clin Dev 7:83-95
McMurphy, Travis B; Huang, Wei; Xiao, Run et al. (2017) Hepatic Expression of Adenovirus 36 E4ORF1 Improves Glycemic Control and Promotes Glucose Metabolism Through AKT Activation. Diabetes 66:358-371
Zhang, Yanhui; Xie, Litao; Gunasekar, Susheel K et al. (2017) SWELL1 is a regulator of adipocyte size, insulin signalling and glucose homeostasis. Nat Cell Biol 19:504-517
Xie, Litao; Zhang, Yanhui; Gunasekar, Susheel K et al. (2017) Induction of adipose and hepatic SWELL1 expression is required for maintaining systemic insulin-sensitivity in obesity. Channels (Austin) 11:673-677
Xiao, Run; Bergin, Stephen M; Zhang, Manchao et al. (2016) Anticancer Molecules in Brain: Implication for Novel Strategy for Cancer Immunotherapy. Immunotherapy (Los Angel) 2:

Showing the most recent 10 out of 19 publications