This application will address NCI Provocative Question 11: How do changes in RNA processing contribute to tumor development? Tumors and leukemias have dramatically increased levels of aberrant RNA splicing, which generates a large population of transcripts that could encode variant proteins. This increased complexity of RNA products could be due to """"""""noisy"""""""" splicing that is increased in transformed cells, but has no functional consequence. Alternatively, the variant RNAs and the proteins they encode could actively contribute to the transformed phenotype. Increased levels of alternative splicing in tumors leads to the expression of transcripts that are too numerous to test individually, for example by over-expression or knock down experiments. Furthermore, if the importance of the variant proteins is due to a mass action or combinatorial effect, then assessing their importance individually will not suffice. Our hypothesis is that if the increased alternative splicing exhibitd by tumors or leukemias contributes to tumor development, then determining the predicted expression levels of protein variants encoded by the alternatively spliced RNAs will be more informative, and will correlate with outcome better than simply measuring the RNA levels. If the products of alternative splicing play no significant biological role, then determining which proteins are produced by the alternatively spliced RNAs will offer no additional advantage in predicting outcome. We will apply an innovative next-generation RNA sequencing approach to the analysis of alternative RNA splicing in a large group of high risk childhood B- progenitor Acute Lymphocytic Leukemia (ALL) samples. Despite recent improvements in the treatments for B- ALL, this high risk cohort represents a group of patients for whom few good treatment options exist. Our approach will produce structural information over the entire length of more than 99% of expressed transcripts, allowing us to analyze gene expression, RNA splicing and the populations of protein variants that are predicted to be produced in each sample. Comparing these data sets will allow us to answer the Provocative Question and to determine whether increased levels of alternative RNA splicing are important in the development of B- progenitor ALL. The alternative splicing machinery contains many poorly characterized enzymes and regulatory proteins. If increased alternative splicing is found to play a role in tumor development these proteins will represent novel potential targets for the development of new drugs or interventions.

Public Health Relevance

Although optimized treatment strategies have improved the survival rates for most children with B- progenitor Acute Lymphocytic Leukemia (B-ALL), there remains a group of high risk patients who fail standard treatments and have few good therapeutic options. We propose to study a complicated and poorly understood process, alternative RNA splicing, in a large group of samples from children with high risk B-ALL to determine whether aberrant regulation of RNA splicing contributes to the disease. If aberrant alternative splicing is involved, new targets could be identified for the development of novel drugs or therapeutic strategies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA170250-02
Application #
8526440
Study Section
Special Emphasis Panel (ZCA1-SRLB-9 (M1))
Program Officer
Strasburger, Jennifer
Project Start
2012-08-08
Project End
2016-05-31
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
2
Fiscal Year
2013
Total Cost
$553,060
Indirect Cost
$173,620
Name
University of New Mexico Health Sciences Center
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
829868723
City
Albuquerque
State
NM
Country
United States
Zip Code
87131
Frerich, Candace A; Brayer, Kathryn J; Painter, Brandon M et al. (2018) Transcriptomes define distinct subgroups of salivary gland adenoid cystic carcinoma with different driver mutations and outcomes. Oncotarget 9:7341-7358
Brown, Roger B; Madrid, Nathaniel J; Suzuki, Hideaki et al. (2017) Optimized approach for Ion Proton RNA sequencing reveals details of RNA splicing and editing features of the transcriptome. PLoS One 12:e0176675
Rajput, Ashwani; Bocklage, Thèrése; Greenbaum, Alissa et al. (2017) Mutant-Allele Tumor Heterogeneity Scores Correlate With Risk of Metastases in Colon Cancer. Clin Colorectal Cancer 16:e165-e170
Mayfield, Jodi R; Czuchlewski, David R; Gale, James M et al. (2017) Integration of ruxolitinib into dose-intensified therapy targeted against a novel JAK2 F694L mutation in B-precursor acute lymphoblastic leukemia. Pediatr Blood Cancer 64:
Brayer, Kathryn J; Frerich, Candace A; Kang, Huining et al. (2016) Recurrent Fusions in MYB and MYBL1 Define a Common, Transcription Factor-Driven Oncogenic Pathway in Salivary Gland Adenoid Cystic Carcinoma. Cancer Discov 6:176-87
Matlawska-Wasowska, K; Kang, H; Devidas, M et al. (2016) MLL rearrangements impact outcome in HOXA-deregulated T-lineage acute lymphoblastic leukemia: a Children's Oncology Group Study. Leukemia 30:1909-12
George, Olivia L; Ness, Scott A (2014) Situational awareness: regulation of the myb transcription factor in differentiation, the cell cycle and oncogenesis. Cancers (Basel) 6:2049-71
Suzuki, Hideaki; Yu, Jiwen; Ness, Scott A et al. (2013) RNA editing events in mitochondrial genes by ultra-deep sequencing methods: a comparison of cytoplasmic male sterile, fertile and restored genotypes in cotton. Mol Genet Genomics 288:445-57