Breast cancer frequently metastasizes to bone where it leads to osteolysis and poor clinical prognosis;however, the underlying roles of hydroxyapatite (HA) - a key component of breast microcalcifications (i.e., a negative prognostic factor for breast cancer) and the bone mineral matrix - remain unclear in this process, due in part to a lack of appropriate model systems. In the presence of a tumor, the physicochemical properties of HA (e.g., crystallinity, chemical composition, size, and aspect ratio) vary with disease state at both the primary (breast) and secondary (bone) sites. The overall hypothesis guiding the current investigator is: tumor-mediated changes to HA materials properties enhance breast cancer metastasis to bone by inducing a bone-metastatic phenotype at the primary site. These cells, in turn, promote premetastatic bone remodeling, which ultimately fosters bone colonization. We have previously developed mineral-containing 3-D tumor models, which permit testing of the importance of the physicochemical properties of HA in breast cancer spreading to bone. Using this system, coupled with advanced materials characterization techniques, we will test three subhypotheses: 1) HA in microcalcifications associated with more aggressive breast cancer is characterized by increased size and crystallinity and leads to the up-regulation of bone metastatic properties in breast cancer cells due in part to varied non-specific protein adsorption; 2) HA in the bones of tumor-bearing mice is characterized by decreased size and crystallinity even prior to metastatic colonization. These changes favor tumor cell seeding and growth, which are mediated by tumor-secreted endocrine signals that differentially regulate bone cell behavior;3) Increased bone-metastatic potential of breast cancer cells due to interactions with HA enhances premetastatic bone remodeling, which, in turn, increases the osteotropism of breast cancer cells;pharmacological intervention with this process can decrease bone metastasis. There are three specific aims designed to test these hypotheses:
In Aim 1, we will characterize HA materials properties in breast microcalcifications, and assess their impact on the bone-metastatic potential of tumor cells.
In Aim 2, we will characterize HA materials properties in the bones of tumor-bearing animals pre- and post-colonization with breast cancer cells, and identify their role in secondary tumor formation.
In Aim 3, we will assess the integrated effects of breast microcalcifications and premetastatic bone remodeling on breast cancer bone metastasis. The novel combination of cancer biology with engineering and materials science approaches will result in a highly reproducible and pathologically relevant culture platform that will allow us to deconvolute the complexity of bone metastasis and identify molecular targets for improved therapies. By elucidating the importance of materials-based mechanisms, the proposed research has the potential to challenge the currently accepted paradigm of bone metastasis as a disease that is solely mediated by cellular and molecular changes.

Public Health Relevance

Bone metastasis is the leading cause of breast cancer-related deaths among women worldwide;however, the role of the mineral hydroxyapatite, a key component of breast microcalcifications (a negative prognostic factor for breast cancer) and the bone mineral matrix, in this process remains unclear. This research will apply state-of-the-art characterization techniques, coupled with three-dimensional cell culture platforms, to systematically elucidate the functional relationship between breast microcalcifications, the bone mineral matrix, mammary tumor cell behavior, and metastatic osteolysis. Our studies will combine materials science with engineering and cancer biology, and this interdisciplinary approach has the potential to revolutionize our understanding and treatment of bone metastasis.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA173083-02
Application #
8551656
Study Section
Biomaterials and Biointerfaces Study Section (BMBI)
Program Officer
Mohla, Suresh
Project Start
2012-09-26
Project End
2017-07-31
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
2
Fiscal Year
2013
Total Cost
$314,758
Indirect Cost
$88,777
Name
Cornell University
Department
Engineering (All Types)
Type
Schools of Engineering
DUNS #
872612445
City
Ithaca
State
NY
Country
United States
Zip Code
14850
Vidavsky, Netta; Kunitake, Jennie Amr; Chiou, Aaron E et al. (2018) Studying biomineralization pathways in a 3D culture model of breast cancer microcalcifications. Biomaterials 179:71-82
Kunitake, Jennie A M R; Choi, Siyoung; Nguyen, Kayla X et al. (2018) Correlative imaging reveals physiochemical heterogeneity of microcalcifications in human breast carcinomas. J Struct Biol 202:25-34
Choi, Siyoung; Friedrichs, Jens; Song, Young Hye et al. (2018) Intrafibrillar, bone-mimetic collagen mineralization regulates breast cancer cell adhesion and migration. Biomaterials :
He, Frank; Chiou, Aaron E; Loh, Hyun Chae et al. (2017) Multiscale characterization of the mineral phase at skeletal sites of breast cancer metastasis. Proc Natl Acad Sci U S A 114:10542-10547
Wu, Fei; Chen, Weisi; Gillis, Brian et al. (2017) Protein-crystal interface mediates cell adhesion and proangiogenic secretion. Biomaterials 116:174-185
Lynch, Maureen E; Chiou, Aaron E; Lee, Min Joon et al. (2016) Three-Dimensional Mechanical Loading Modulates the Osteogenic Response of Mesenchymal Stem Cells to Tumor-Derived Soluble Signals. Tissue Eng Part A 22:1006-15
Chang, Eric P; Roncal-Herrero, Teresa; Morgan, Tamara et al. (2016) Synergistic Biomineralization Phenomena Created by a Combinatorial Nacre Protein Model System. Biochemistry 55:2401-10
DelNero, Peter; Lane, Maureen; Verbridge, Scott S et al. (2015) 3D culture broadly regulates tumor cell hypoxia response and angiogenesis via pro-inflammatory pathways. Biomaterials 55:110-8
Wu, Fei; Lin, Debra D W; Chang, Jin Ho et al. (2015) Effect of the Materials Properties of Hydroxyapatite Nanoparticles on Fibronectin Deposition and Conformation. Cryst Growth Des 15:2452-2460
Hendley 4th, Coit T; Tao, Jinhui; Kunitake, Jennie A M R et al. (2015) Microscopy techniques for investigating the control of organic constituents on biomineralization. MRS Bull 40:480-489

Showing the most recent 10 out of 16 publications