The RAF inhibitors, vemurafenib (PLX4032/Zelboraf) and dabrafenib, are the current first-line treatment options for late-stage mutant BRAF melanoma. Objective responses to vemurafenib/dabrafenib in patients are associated with greater than 80% inhibition of ERK1/2 signaling, as measured by immunohistochemical staining. However, the long-term efficacy of current RAF inhibitors is limited by acquired resistance in mutant BRAF cells and paradoxical ERK1/2 activation in wild-type BRAF cells. In this proposal, we outline a novel in vivo reporter system to measure ERK1/2 pathway activity in a non-invasive, quantitative and temporal manner in mutant BRAF melanoma cells. We have utilized this system to provide novel mechanistic insight into acquired resistance to vemurafenib. We also show that a new class of RAF inhibitors that do not elicit paradoxical ERK1/2 activation may provide inhibits growth of vemurafenib-resistant melanoma cells. Here, we will propose to further define mechanisms underlying resistance to vemurafenib, and to determine the effects and modes of resistance to this new class of RAF inhibitors. At the completion of our experiments, we expect to have provided the preclinical basis for new first-line for mutant BRAF melanoma and second-line treatment options for vemurafenib/dabrafenib-resistant melanomas.

Public Health Relevance

Melanoma is the deadliest form of skin cancer. Targeted RAF inhibitors have dramatically changed the first-line treatment options for many melanoma patients but these therapeutics are hampered by side effects and acquired resistance leading to disease progression. This application utilizes a novel in vivo system and analyzes next generation RAF inhibitors aiming to provide the preclinical basis for future treatment options.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA182635-02
Application #
8891392
Study Section
Basic Mechanisms of Cancer Therapeutics Study Section (BMCT)
Program Officer
Forry, Suzanne L
Project Start
2014-07-14
Project End
2019-05-31
Budget Start
2015-06-01
Budget End
2016-05-31
Support Year
2
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Thomas Jefferson University
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
053284659
City
Philadelphia
State
PA
Country
United States
Zip Code
19107
Romano, Gabriele; Chen, Pei-Ling; Song, Ping et al. (2018) A Preexisting Rare PIK3CAE545K Subpopulation Confers Clinical Resistance to MEK plus CDK4/6 Inhibition in NRAS Melanoma and Is Dependent on S6K1 Signaling. Cancer Discov 8:556-567
Hartsough, Edward J; Kugel 3rd, Curtis H; Vido, Michael J et al. (2018) Response and Resistance to Paradox-Breaking BRAF Inhibitor in Melanomas In Vivo and Ex Vivo. Mol Cancer Ther 17:84-95
Teh, Jessica L F; Aplin, Andrew E (2018) Arrested Developments: CDK4/6 Inhibitor Resistance and Alterations in the Tumor Immune Microenvironment. Clin Cancer Res :
Vido, Michael J; Le, Kaitlyn; Hartsough, Edward J et al. (2018) BRAF Splice Variant Resistance to RAF Inhibitor Requires Enhanced MEK Association. Cell Rep 25:1501-1510.e3
Teh, Jessica L F; Aplin, Andrew E (2018) Playing the Melanoma Endgame. Clin Cancer Res 24:4629-4630
Chua, Vivian; Lapadula, Dominic; Randolph, Clinita et al. (2017) Dysregulated GPCR Signaling and Therapeutic Options in Uveal Melanoma. Mol Cancer Res 15:501-506
Kageyama, Ken; Ohara, Masahiro; Saito, Kengo et al. (2017) Establishment of an orthotopic patient-derived xenograft mouse model using uveal melanoma hepatic metastasis. J Transl Med 15:145
Behera, Reeti; Kaur, Amanpreet; Webster, Marie R et al. (2017) Inhibition of Age-Related Therapy Resistance in Melanoma by Rosiglitazone-Mediated Induction of Klotho. Clin Cancer Res 23:3181-3190
Cheng, Hanyin; Chua, Vivian; Liao, Connie et al. (2017) Co-targeting HGF/cMET Signaling with MEK Inhibitors in Metastatic Uveal Melanoma. Mol Cancer Ther 16:516-528
Teh, Jessica L F; Purwin, Timothy J; Greenawalt, Evan J et al. (2016) An In Vivo Reporter to Quantitatively and Temporally Analyze the Effects of CDK4/6 Inhibitor-Based Therapies in Melanoma. Cancer Res 76:5455-66

Showing the most recent 10 out of 15 publications