This proposed project is to address provocative question 2 from Group C: How can the physical properties of tumors, such as the cell's electrical, optical or mechanical properties, be used to provide earlier or more reliable cancer detection, diagnosis, prognosis, or monitoring of drug response or tumor recurrence? We will investigate the optical properties and their associated nanoscale architectural changes in the cell nucleus during carcinogenesis and determine their accuracy in providing earlier and more accurate diagnosis and prognosis of breast cancer. We hypothesize that the nanoscale alterations in nuclear architecture occur early in carcinogenesis and the measurement of easily obtained optical markers of nanoscale changes in nuclear architecture can serve as a cost-effective and accurate tool for earlier and more accurate cancer diagnosis and prognosis. Our group has developed a set of optical microscopy systems that can comprehensively characterize 3D nanoscale alterations in nuclear architecture in carcinogenesis using clinically obtained routine formalin-fixed and paraffin-embedded tissue. Our optical microscopy systems include depth-resolved spatial-domain low-coherence quantitative phase microscopy (depth-resolved SL-QPM) and spectral-encoding of spatial frequency (SESF). We showed that depth-resolved SL-QPM detects structural changes at a sensitivity of 1 nm within a single cell nucleus, while SESF extracts the structural length-scale distribution at an accuracy of ~10-20 nm. Our extensive preliminary data have shown the promise of these optical markers to detect the presence of invasive cancer even from histologically normal cells from multiple tumor types and predict cancer progression risk. Now we propose to use these two optical microscopy systems together with state-of-the-art 3D super-resolution microscopy, to define a set of optical markers and the underlying nanoscale changes in nuclear architecture that are characteristic of each phase of tumorigenesis and identify those that detect premalignant changes. Then we will perform a clinical study to evaluate the accuracy of optical markers of nanoscale changes in nuclear architecture to predict breast cancer progression risk among women with pre-cancerous lesions (e.g., atypical hyperplasia (AH)) and pre-invasive cancer of ductal carcinoma in situ (DCIS) to avoid over- treatment. This project, if successful, will establish the alterations of nanoscale nuclear architecture in carcinogenesis, and have profound impact on both tumor biology research and clinical care. It will build a solid foundation for future use of optical markrs of nanoscale changes in nuclear architecture as accurate prognostic markers to predict those women that are likely to progress into invasive cancer.

Public Health Relevance

This project aims to evaluate the use of nanoscale changes in nuclear architecture to improve breast cancer prognosis in women without the presence of invasive cancer. Due to the uncertainties of cancer progression risk in patients with pre-cancerous lesions and pre-invasive cancer (DCIS), many unnecessary treatments are performed. Our proposed optical markers have the potential to serve as a cost-effective and accurate tool to improve the accuracy of cancer progression risk, and reduce the harm and cost of unnecessary over-treatment.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA185363-03
Application #
9044737
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Sorg, Brian S
Project Start
2014-05-01
Project End
2018-04-30
Budget Start
2016-05-01
Budget End
2017-04-30
Support Year
3
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Pittsburgh
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Uttam, Shikhar; Liu, Yang (2018) Fourier phase based depth-resolved nanoscale nuclear architecture mapping for cancer detection. Methods 136:134-151
Xu, Jianquan; Ma, Hongqiang; Jin, Jingyi et al. (2018) Super-Resolution Imaging of Higher-Order Chromatin Structures at Different Epigenomic States in Single Mammalian Cells. Cell Rep 24:873-882
Xu, Jianquan; Ma, Hongqiang; Liu, Yang (2017) Stochastic Optical Reconstruction Microscopy (STORM). Curr Protoc Cytom 81:12.46.1-12.46.27
Ma, Hongqiang; Fu, Rao; Xu, Jianquan et al. (2017) A simple and cost-effective setup for super-resolution localization microscopy. Sci Rep 7:1542
Ma, Hongqiang; Xu, Jianquan; Jin, Jingyi et al. (2017) A Simple Marker-Assisted 3D Nanometer Drift Correction Method for Superresolution Microscopy. Biophys J 112:2196-2208
Pham, Hoa V; Pantanowitz, Liron; Liu, Yang (2016) Quantitative phase imaging to improve the diagnostic accuracy of urine cytology. Cancer Cytopathol 124:641-50
Uttam, Shikhar; Pham, Hoa V; LaFace, Justin et al. (2015) Early Prediction of Cancer Progression by Depth-Resolved Nanoscale Mapping of Nuclear Architecture from Unstained Tissue Specimens. Cancer Res 75:4718-27
Uttam, Shikhar; Liu, Yang (2015) Fourier phase in Fourier-domain optical coherence tomography. J Opt Soc Am A Opt Image Sci Vis 32:2286-306
Sun, Luxi; Tan, Rong; Xu, Jianquan et al. (2015) Targeted DNA damage at individual telomeres disrupts their integrity and triggers cell death. Nucleic Acids Res 43:6334-47
Del Portillo, Armando; Lagana, Stephen M; Yao, Yuan et al. (2015) Evaluation of Mutational Testing of Preneoplastic Barrett's Mucosa by Next-Generation Sequencing of Formalin-Fixed, Paraffin-Embedded Endoscopic Samples for Detection of Concurrent Dysplasia and Adenocarcinoma in Barrett's Esophagus. J Mol Diagn 17:412-9

Showing the most recent 10 out of 11 publications