Breast cancer development is regulated by extracellular biophysical and biochemical cues. Among signaling mediators, members of the Rho family of small GTPases have been identified as controlling the growth, motility, invasion, and metastasis of breast cancer cells. We have previously implicated the splice isoform Rac1b as a key player in activation of epithelial-mesenchymal transition (EMT) and cellular invasiveness in breast cancer cells. Our recently published and preliminary data demonstrate that the key step in Rac1b control of cellular phenotype is through direct interaction with and activation of NADPH oxidase and consequent production of reactive oxygen species (ROS), and that the assembly of the Rac1b-NADPH oxidase complex is controlled by the extracellular matrix (ECM) and tissue tension. We hypothesize that Rac1b acts as a key signaling nexus to integrate mechanical and chemical signaling inputs from the surrounding ECM and tissue to control development of the malignant phenotype. We propose to test this hypothesis through the use of micropatterning, molecular biology, and numerical modeling with cultured cells, transgenic animals, and human breast tissue biopsies.
In Specific Aim 1, we will combine engineered substrata with molecular biology approaches to define the molecular mechanisms through which the substratum microenvironment promotes Rac1b membrane localization, NADPH oxidase assembly, and ROS-mediated EMT. We will focus specifically on signaling via integrin-linked kinase (ILK).
In Specific Aim 2, we will combine sophisticated three-dimensional engineered and organotypic culture models with experiments using transgenic mice to define how the microenvironment of the normal host epithelium affects Rac1b membrane localization, integrin signaling, EMT, and motility of the resident tumor cells.
In Specific Aim 3, we will use breast tissue samples from women who have been found to have benign breast disease to define how age-associated changes in lobular structure and composition affect ILK, Rac1b signaling, and breast cancer risk. The proposed work will significantly advance understanding of how biochemical and biomechanical signals are integrated in the control of Rac1b- and ROS- associated tumor progression and how activation of EMT is controlled by microenvironmental signals. These advances will have direct relevance to our understanding of normal tissue development and progression to malignancy.

Public Health Relevance

The rate of breast cancer progression and the prognosis of patients who develop breast cancer is known to be influenced by the mechanical tension of the surrounding breast tissue. This project dissects how extracellular mechanical signals are integrated with known soluble signals though a combination of three-dimensional breast tissue equivalents, transgenic mouse models, and human breast tissue biopsies to identify how and at what stage in breast tumor development intervention in these processes would be most effective therapeutically.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA187692-03
Application #
9274218
Study Section
Tumor Progression and Metastasis Study Section (TPM)
Program Officer
Woodhouse, Elizabeth
Project Start
2015-06-01
Project End
2020-05-31
Budget Start
2017-06-01
Budget End
2018-05-31
Support Year
3
Fiscal Year
2017
Total Cost
$417,569
Indirect Cost
$94,942
Name
Princeton University
Department
Engineering (All Types)
Type
Schools of Engineering
DUNS #
002484665
City
Princeton
State
NJ
Country
United States
Zip Code
08543
Simi, Allison K; Anla?, Ali?ya A; Stallings-Mann, Melody et al. (2018) A Soft Microenvironment Protects from Failure of Midbody Abscission and Multinucleation Downstream of the EMT-Promoting Transcription Factor Snail. Cancer Res 78:2277-2289
Han, Siyang; Pang, Mei-Fong; Nelson, Celeste M (2018) Substratum stiffness tunes proliferation downstream of Wnt3a in part by regulating integrin-linked kinase and frizzled-1. J Cell Sci 131:
Nerger, Bryan A; Nelson, Celeste M (2018) 3D culture models for studying branching morphogenesis in the mammary gland and mammalian lung. Biomaterials :
Anla?, Ali?ya A; Nelson, Celeste M (2018) Tissue mechanics regulates form, function, and dysfunction. Curr Opin Cell Biol 54:98-105
Kourouklis, Andreas P; Nelson, Celeste M (2018) Modeling branching morphogenesis using materials with programmable mechanical instabilities. Curr Opin Biomed Eng 6:66-73
Nerger, Bryan A; Siedlik, Michael J; Nelson, Celeste M (2017) Microfabricated tissues for investigating traction forces involved in cell migration and tissue morphogenesis. Cell Mol Life Sci 74:1819-1834
Siedlik, Michael J; Manivannan, Sriram; Kevrekidis, Ioannis G et al. (2017) Cell Division Induces and Switches Coherent Angular Motion within Bounded Cellular Collectives. Biophys J 112:2419-2427
Piotrowski-Daspit, Alexandra S; Nerger, Bryan A; Wolf, Abraham E et al. (2017) Dynamics of Tissue-Induced Alignment of Fibrous Extracellular Matrix. Biophys J 113:702-713
Winham, Stacey J; Mehner, Christine; Heinzen, Ethan P et al. (2017) NanoString-based breast cancer risk prediction for women with sclerosing adenosis. Breast Cancer Res Treat 166:641-650
Goodwin, Katharine; Nelson, Celeste M (2017) Generating tissue topology through remodeling of cell-cell adhesions. Exp Cell Res 358:45-51

Showing the most recent 10 out of 18 publications