Therapeutic antibodies targeting the programmed cell death 1 (PD-1) pathway have shown remarkable efficacy in the treatment of advanced melanoma. Consequently, the United States Food and Drug Administration recently approved two PD-1 inhibitors for the treatment of patients with advanced melanoma who no longer respond to other drugs. However, anti-PD-1 therapy does not translate into long-term disease control in most patients, highlighting the need for mechanistic insights and biomarkers that predict and help optimize clinical benefit. Because PD-1 has mainly been studied in immune cells, the majority of research regarding its role in melanoma and the identification of biomarkers for predicting response to PD-1 inhibitors has focused on immune cell-associated PD-1 functions and their immunologic and molecular correlates. We have recently demonstrated that PD-1 is not only expressed by immune cells, but also by melanoma cells. Melanoma- expressed PD-1 serves as a cancer cell-intrinsic growth receptor that activates oncogenic signaling and promotes tumorigenesis. Inhibition of melanoma-PD-1 suppresses tumor growth, even in mice lacking adaptive immunity. In patients with stage IV disease, tumoral expression of melanoma-PD-1 receptor targets correlates with clinical response to PD-1 inhibition. Our preliminary studies identify novel PD-1 pathway functions in tumor growth and suggest that melanoma-PD-1 blockade might contribute to the clinical efficacy of anti-PD-1 therapy. Therefore, we propose to define the precise mechanisms through which the melanoma-PD-1 receptor promotes tumor progression and examine how the melanoma cell-intrinsic PD-1 signaling axis might be exploited for predicting and optimizing treatment response to therapeutic PD-1 antibodies.
Our specific aims are to 1) define melanoma cell-intrinsic PD-1 signaling networks required for cancer progression and 2) to examine the utility of melanoma-PD-1 signaling mediators as biomarkers of clinical response to anti-PD-1 therapy. We will use several state-of-the-art gain- and loss-of-function approaches, including mutagenesis of melanoma-PD-1 signaling motifs, knockdown, overexpression, antibody-mediated and pharmacologic inhibition or activation of PD-1 pathway members in melanoma and immune cells, as well as PD-1 and PD-1 ligand knockout mice, with or without functional immunity, to define the immunologic, molecular, and cellular factors required for melanoma-PD-1-dependent tumorigenesis. Our initiative will also implement tumor biospecimens obtained from melanoma patients before, during, and/or after anti-PD-1 therapy, to examine whether expression of melanoma-PD-1 signaling effectors correlates with clinical outcome. These studies will enhance our basic understanding of the mechanisms underlying melanoma progression and provide insight into how melanoma-PD-1 signaling interactions may be effectively manipulated for improved tumor therapy.

Public Health Relevance

This research project will provide fundamental insight into how a newly identified protumorigenic mechanism, the melanoma cell-intrinsic PD-1 receptor axis, promotes cancer progression. Our studies will further evaluate whether melanoma-PD-1 and its downstream signaling mediators can be used as biomarkers to predict clinical benefit from anti-PD-1 therapy. Results from this project will have implications for improving response to PD-1 inhibitors in melanoma patients.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Cancer Immunopathology and Immunotherapy Study Section (CII)
Program Officer
Hildesheim, Jeffrey
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Brigham and Women's Hospital
United States
Zip Code
Ordikhani, Farideh; Uehara, Mayuko; Kasinath, Vivek et al. (2018) Targeting antigen-presenting cells by anti-PD-1 nanoparticles augments antitumor immunity. JCI Insight 3: