Development of cell-free DNA assays for HCC screening and liquid biopsy This proposal is for the development of a panel of non-invasive, cell-free (cf) DNA markers, found in the blood or urine, for clinical usage as biomarkers of hepatocellular carcinoma (HCC). This panel will be used in a Certificate for Laboratory Improvement Act (CLIA) lab setting for the early detection and liquid biopsy. The development of this panel will be accomplished by the partnership with two industrial partners, Medical Diagnostic Laboratories (MDL), a leading diagnostic company for over 130 CLIA-certified PCR diagnostic tests in-house, and JBS Science Inc., a company specialized in detecting fragmented cell-free HCC DNA modifications, and two clinical sites, Thomas Jefferson University and Johns Hopkins University. Like other cancers, HCC is a disease of the genome; identification of the DNA modifications underlying the development of HCC should provide unambiguous detection of HCC and personalized care, if HCC is detected. Although there have been numerous attempts to develop cfDNA blood-based, liquid biopsy tests for cancers, most have failed. Of the few attempts designed for HCC, there have not been any used clinically for that capacity. This proposal is for the development of assays that will overcome the obstacles of bringing biomarker discovery to clinical use in the form of liquid biopsies. We will achieve this through detection of a panel of DNA modifications that will enable screening of HCC, identifying cancer subtypes, optimizing drug treatment plans, and monitoring residual diseases to meet the unmet need in early detection and personalized treatment of the cancer. Briefly, in preliminary studies, we have shown that most cfDNA that is present in the blood or urine, and is derived from tumor cells, is low molecular weight (LMW), <300 nts, and thus requires methods specifically designed for small DNA detection and amplification. In a study of 74 HCC urine samples, we detected 77% of the HCC cases and distinguished these cases from liver cirrhosis (n=45) and hepatitis (n=42) with 95% specificity. This was accomplished by detection and quantification of DNA fragments corresponding to DNA modifications (mutations or methylation) within three cfDNA markers: TP53 mutations and methylated GSTP1 and RASSF1a. We believe that the addition of just two HCC-associated DNA modifications, Tert and CTNNB1 mutations, covering the other major HCC cancer pathways will greatly improve the performance of this panel, since almost all (98%, 60/61) HCC tissue tested contained at least one of these five DNA modifications (mutations or methylation). The assays for detecting these five DNA markers in the circulation must be standardized, and the studies must be confirmed. This proposal will therefore develop and optimize the five cfDNA assays for reduction to practice and to determine their clinical utilit in the early detection and precision management of HCC. The deliverable components will be CLIA-certified assays for which their clinical usefulness will be determined, and these assays will be ready for use in commercial CLIA labs, with which we have partnered.

Public Health Relevance

With liver cancers in general, and HCC in particular, which is now one of the leading causes of cancer-related deaths in the US, and with early detection as one of the most critical determinants of outcome, there is an urgent need for effective non-invasive methods of identification of those who are at risk and need to be referred for further care. Current approaches miss most cancers, and the most widely used non-invasive marker, serum AFP, which only detects approximately 50% of cancers, is not effective for early detection, resulting in a lack of meaningful intervention. Therefore, our approach is intended to complement the current methods of detection, as well as provide information about the cancer genetics, for better disease management for prognosis improvement.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA202769-04
Application #
9698305
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Rinaudo, Jo Ann S
Project Start
2016-06-01
Project End
2021-05-31
Budget Start
2019-06-01
Budget End
2020-05-31
Support Year
4
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Baruch S. Blumberg Institute
Department
Type
DUNS #
167281851
City
Doylestown
State
PA
Country
United States
Zip Code
18902
Wang, Jeremy; Jain, Surbhi; Chen, Dion et al. (2018) Development and Evaluation of Novel Statistical Methods in Urine Biomarker-Based Hepatocellular Carcinoma Screening. Sci Rep 8:3799
Jain, Surbhi; Su, Ying-Hsiu; Su, Yih-Ping et al. (2018) Characterization of the hepatitis B virus DNA detected in urine of chronic hepatitis B patients. BMC Gastroenterol 18:40
Hann, Hie-Won; Jain, Surbhi; Park, Grace et al. (2017) Detection of urine DNA markers for monitoring recurrent hepatocellular carcinoma. Hepatoma Res 3:105-111
Chen, Dion; Jain, Surbhi; Su, Ying-Hsu et al. (2017) Building Classification Models with Combined Biomarker Tests: Application to Early Detection of Liver Cancer. J Stat Sci Appl 5:91-103
Shieh, Fwu-Shan; Jongeneel, Patrick; Steffen, Jamin D et al. (2017) ChimericSeq: An open-source, user-friendly interface for analyzing NGS data to identify and characterize viral-host chimeric sequences. PLoS One 12:e0182843