Castration-resistant prostate cancer (CRPC) is the major cause of prostate cancer (PCa) mortality. Targeting the androgens-androgen receptor (AR) axis by the second-generation endocrine therapies such as abiraterone (ABI) and enzalutamide (ENZ) has been effective initially for CRPC treatment in clinic. However, most patients develop resistance that undermines survival and quality of life and the therapy resistance is likely due to expression of AR splice variants (AR-Vs) such as AR-V7 and/or other undefined mechanisms. Prostate- specific antigen (PSA or known as KLK3) is one of the genes that are highly transcriptionally activated by AR. Despite being extensively utilized as a biomarker for PCa diagnosis and prognosis, the significance of the PSA gene or the entire genomic locus of this gene in PCa growth and survival has yet been well established. We demonstrated that non-coding RNA transcribed from the PSA enhancer, or called PSA eRNA, is aberrantly upregulated in CRPC cells in culture, xenografts and patient tissues. We further showed that expression of PSA eRNA is regulated by AR-Vs in ENZ-resistant CRPC cells. Moreover, we showed that PSA eRNA has cis-effects on PSA mRNA expression as well as broad trans-effects on expression of AR-regulated biologically important genes in CRPC cells. Mechanistically, we found that PSA eRNA contains a HIV-1 TAR RNA like (TAR-L) motif that is crucial for binding to CYCLIN T1, a key component of the positive transcription elongation factor b (P-TEFb) complex and P-TEFb-mediated RNA polymerase II serine 2 phosphorylation (Pol II-Ser2p). Importantly, we demonstrated that targeting PSA eRNA with generation 2.5 antisense oligonucleotides (ASOs) inhibits growth of ENZ-resistant CRPC cells. Our further studies showed that eRNA transcribed from the FTO gene enhancer, one of the AR-eRNAs induced by ENZ, binds to RNA splicing factors and regulates expression of AR splice variant AR-V7 in ENZ-resistant CRPC cells. These findings support the hypothesis that aberrant expression of AR-eRNAs including PSA and FTO eRNAs acts as a new proxy of AR functional abnormality that promotes endocrine therapy-resistant growth of CRPC, thereby representing a novel target for CRPC treatment. In this application, we will determine the mechanisms by which PSA eRNA regulates gene transcription and FTO eRNA regulates AR-V7 expression in ENZ-resistant CRPC cells (Aim 1) and to determine the functional importance and clinical significance of PSA eRNA expression in ENZ- and ABI- resistant CRPC cells using mouse models and human patient samples (Aim 2). These studies will employ a comprehensive approach bringing complementary expertise in tumor biology, molecular biology, medical oncology, pathobiology, computing science and bioinformatics and biomedical statistics. Findings from the proposed studies will significantly advance our understanding of the mechanisms that drives aberrant AR activity and therapy-resistant growth of CRPC cells, but also allow us to develop new strategies by targeting PSA eRNA to inhibit aberrant AR activity for effective treatment of CRPC.

Public Health Relevance

The androgen receptor (AR) remains the major therapeutic target of castration-resistant prostate cancer (CRPC). However, most patients develop resistance and at present there is no cure for CRPC in clinic. This application is designed to determine how aberrant expression of enhancer RNA (eRNA) at the PSA gene locus acts as a new proxy of AR functional abnormality to drive endocrine therapy-resistant growth of CRPC by upregulating a large number of downstream biologically important genes. This knowledge will significantly advance our understanding of the mechanisms that promote aberrant AR activity and therapy-resistance in CRPC cells, but also may lead to develop new strategies for effective treatment of CRPC.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Molecular Oncogenesis Study Section (MONC)
Program Officer
Li, Jerry
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Mayo Clinic, Rochester
United States
Zip Code
Jin, Xin; Yan, Yuqian; Wang, Dejie et al. (2018) DUB3 Promotes BET Inhibitor Resistance and Cancer Progression by Deubiquitinating BRD4. Mol Cell 71:592-605.e4
Blee, Alexandra M; He, Yundong; Yang, Yinhui et al. (2018) TMPRSS2-ERG Controls Luminal Epithelial Lineage and Antiandrogen Sensitivity in PTEN and TP53-Mutated Prostate Cancer. Clin Cancer Res 24:4551-4565