Lung cancer is the leading cause of cancer deaths in both men and women in the United States, with over 155,000 patients dying each year in this country alone. Several factors contribute to the poor outcome of lung cancer patients, but, as in most solid tumors, the ability of cancer cells to leave the primary tumor and establish inoperable metastases is a major impediment to successful therapy. Metastasis thus represents a major clinical challenge that is driven by as yet poorly understood cell state alterations. By integratin gene expression analyses on murine models of metastatic lung adenocarcinoma and human lung adenocarcinomas we identified the transcription factor Arntl2 as a key driver of lung adenocarcinoma metastatic ability. Arntl2 appears to drive metastatic fitness by controlling the expression of a complex pro-metastatic secretome that has the ability to greatly increase clonal growth potential.
In Aim1, we will functionally interrogate Arntl2 function in human and mouse lung adenocarcinoma cell lines. We will perform gain- and loss-of-function experiments and fully assess the cellular phenotypes driven by Arntl2. Transplantation assays and quantification of initial adhesion, proliferation, and cell death within the metastatic site in vivo will elucidate te cellular consequence of high Arntl2 expression.
In Aim2, we will investigate which Arntl2-regulated secreted factors cooperate to drive clonal growth and metastatic ability. We will integrate screening of recombinant proteins in cell culture, gain- and loss-of-function experiments in cell culture and in vivo, and therapeutically target pathways downstream of key pro-metastatic secreted proteins to better understand the importance of autocrine metastatic niche factors.
In Aim3, we will use novel methods for CRISPR/Cas9-mediated genome editing and lentiviral-mediated cDNA expression to test the requirement and sufficiency of Arntl2 and Arntl2- regulated genes to promote step of the metastatic cascade in autochthonous mouse models of human lung cancer. Given the immense clinical impact of metastatic cancer and the current gap in understanding the molecular underpinnings of this disease state, both clinical practice and patient outcome would be greatly impacted by any new therapies that might result from the fundamental knowledge gained from our proposed analyses. By combining quantitative methods and powerful in vivo methods, we hope to uncover general principles that govern tumor progression and metastatic spread and ultimately reveal novel therapeutic targets across the continuum of cancer progression.

Public Health Relevance

Metastasis represents a major clinical challenge that is driven by as yet poorly understood cell state alterations. We have identified a potentially pro-metastatic secretome controlled by the transcription factor Arntl2 as a key driver of lung adenocarcinoma metastatic ability. We will perform gain- and loss-of-function experiments in human and murine cell lines to dissect the cellular and molecular changed induced by Arntl2 and these secreted factors. We will also use novel methods to assess the impact of these pro-metastatic factors on each step of the metastatic cascade in genetically-engineered models of human lung cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA204620-02
Application #
9260764
Study Section
Tumor Progression and Metastasis Study Section (TPM)
Program Officer
Ault, Grace S
Project Start
2016-04-12
Project End
2021-03-31
Budget Start
2017-04-01
Budget End
2018-03-31
Support Year
2
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Stanford University
Department
Genetics
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94304
Brady, Jennifer J; Chuang, Chen-Hua; Greenside, Peyton G et al. (2016) An Arntl2-Driven Secretome Enables Lung Adenocarcinoma Metastatic Self-Sufficiency. Cancer Cell 29:697-710