Breast cancer is a deadly disease and new strategies are needed to fulfill the goals of treatment and eradication. Recent development of epigenetic-based inhibitors offers new avenues of potential therapeutics for breast and other human cancers. Our work using a new mouse model of breast cancer that parallels the aberrant expression of TRIM24 in all breast cancer sub-types will be used to gain a deeper understanding of tumor development and treatment. Epigenetic regulators are frequent targets of aberrant regulation, amplification or mutation in all human cancers. Histone ?writers?, ?erasers? and ?readers? are epigenetic regulators that catalyze addition, removal and/or interaction, respectively, with post-translational modifications (PTMs) of histones or other modified proteins, with subsequent regulatory outcomes for gene expression. Our laboratory discovered Tripartite Motif Protein 24 (TRIM24) as a histone reader and showed that TRIM24: (i) ubiquitinated p53 and siRNA-depletion of TRIM24 led to p53-dependent apoptosis of embryonic stem cells and breast cancer-derived cells (MCF7), (ii) recruited estrogen receptor to chromatin by PHD/bromodomain reading of a unique signature of histone PTMs (H3K4me0; H3K23ac) to co-regulate estrogen-dependent transcription, (iii) induced transformation of immortalized human mammary epithelial cells (iHMECs) by altering metabolism and up-regulating c-Myc expression when ectopically expressed, and (iv) a small molecule inhibitor of the TRIM24 bromodomain disrupts chromatin interactions in vitro. Importantly, we found that aberrant expression of TRIM24 negatively correlates with breast cancer patient survival. TRIM24 is over expressed in all sub-types of breast cancer and is highest in basal breast cancers. We developed a mouse model of TRIM24-expressing breast cancers by conditional over-expression of a Trim24 transgene in mammary epithelia. We saw that aberrant, tissue-specific expression of TRIM24 is sufficient for tumor initiation, development and progression to highly heterogeneous mammary carcinomas. We hypothesize that our proposed, multi-faceted studies, including mouse models, cultured cells and in vitro analyses will uncover how aberrant expression of TRIM24 drives heterogeneous tumor development in mammary/breast epithelia, and that our findings will further development of epigenetic-based therapeutics to treat breast cancers. Our long-term goal is to leverage a deep mechanistic understanding of TRIM24 functions toward innovative therapeutic approaches to treat breast and other cancers in humans.

Public Health Relevance

Our laboratory discovered histone reader Tripartite Motif Protein 24 (TRIM24) as an epigenetic regulator that also targets tumor suppressor p53 for ubiquitination and degradation, recruits estrogen receptor to chromatin to co-regulate estrogen-dependent transcription and showed that high expression, which occurs in all sub- types of breast cancer and is highest in basal breast cancers, negatively correlates with breast cancer patient survival. We developed a mouse model of TRIM24-expressing breast cancers by conditional over-expression of a Trim24 transgene in mammary epithelia, and we will use this model to determine when or how progression leads to the heterogeneous, aggressive tumors that develop. We have a small molecule inhibitor of the TRIM24 bromodomain and we will test this inhibitor in our model systems and cultured cells to determine if we can inhibit mammary tumorigenesis.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
1R01CA214871-01
Application #
9285022
Study Section
Cancer Molecular Pathobiology Study Section (CAMP)
Program Officer
Sathyamoorthy, Neeraja
Project Start
2017-03-01
Project End
2022-02-28
Budget Start
2017-03-01
Budget End
2018-02-28
Support Year
1
Fiscal Year
2017
Total Cost
$402,021
Indirect Cost
$150,758
Name
University of Texas MD Anderson Cancer Center
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030