Our past research has provided considerable insight into the signals elicited through G-protein coupled receptors (GPCRs) that activate RhoA on astrocytes and in 1321N1 glioblastoma cells. The pathways regulated through PAR1 and S1P receptors via G?12/13 engagement include RhoA activation to increase cell proliferation, survival, and invasion-hallmarks of cancer. Our recent studies demonstrate robust activation of the transcriptional co-activators MRTF-A and YAP through RhoA signaling in glioblastoma cells, and implicate altered gene expression in proliferative and migratory responses. The objective of this proposal is to demonstrate that robust transcriptional gene programs elicited through RhoA signaling are critical to glioblastoma multiforme (GBM) tumor growth and maintenance of glioblastoma stem cells (GSC), with a long term goal of identifying new therapeutic targets for this devastating disease.
Aim #1 uses the human 1321N1 glioblastoma cell line to define cellular events and identify changes in specific target genes by which GPCRs and RhoA engage transcriptional pathways that contribute to cancer-relevant cellular responses. S1P- and thrombin-induced proliferation, survival, adhesion, migration, invasion and angiogenesis are assessed in WT and MRTF-A or YAP CRISPR/Cas9 KO cells. Data from RNA seq analysis are used to identify critical regulated genes, and tested for their functional importance in cellular responses. Actions of target genes on, autocrine and transcriptional pathways that amplify response to GPCRs and RhoA are considered.
Aim #2 uses patient-derived glioblastoma xenografts (PDX), as a model of glioblastoma stem cells. Several PDX lines will be grown in serum free medium in vitro as neurospheres or adherent cultures and subsequently implanted as orthotopic (brain) xenografts... YAP, MRTF-A, RhoA and their downstream target genes will be knocked down using shRNA and in vitro stem cell markers, cellular responses and in vivo tumor growth assessed.
Aim #3 tests the hypothesis that RhoA-mediated transcriptional signaling leads to astrocyte dedifferentiation and gliomagenesis driven by activated Ras). Proof of principle experiments examine dedifferentiation of isolated mouse astrocytes infected with lentiviruses encoding oncogenic Ras and in which molecules in the RhoA signaling pathway are genetically deleted or knocked down with shRNAs. In vivo studies of gliomagenesis are carried out by delivery of oncogenes by lentiviral infection into the hippocampus of GFAP-Cre mice followed by analysis of tumor growth, invasion, and changes in expression of target genes and stem cell markers. The overall findings from these studies should demonstrate that GPCR- and RhoA-mediated transcriptional activation can elicit genetic and functional responses that contribute to dysregulation in glioblastoma, and that RhoA signaling contributes to the oncogenic effect of established GBM tumor drivers. The health-related significance is that these findings could shift the focus of current research and clinical practice from the established disease drivers towards consideration of GPCR- and RhoA-regulated signaling pathways in GBM.

Public Health Relevance

G-protein coupled receptors (GPCRs) on the cell surface transduce signals through a protein called RhoA and there is evidence that this pathway is dysregulated in cancer. We study tumor cells derived from the most aggressive brain tumor, glioblastoma multiforme (GBM), and have discovered novel ways that RhoA tells these cells to divide, survive and invade. We are discovering how block these signals in tumor cells and examining how they affect GBM tumor formation in animal models, with the goal of translating this into therapies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA218859-03
Application #
9850940
Study Section
Molecular and Integrative Signal Transduction Study Section (MIST)
Program Officer
Hildesheim, Jeffrey
Project Start
2018-02-09
Project End
2023-01-31
Budget Start
2020-02-01
Budget End
2021-01-31
Support Year
3
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of California, San Diego
Department
Pharmacology
Type
Schools of Medicine
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Yu, Olivia M; Benitez, Jorge A; Plouffe, Steven W et al. (2018) YAP and MRTF-A, transcriptional co-activators of RhoA-mediated gene expression, are critical for glioblastoma tumorigenicity. Oncogene 37:5492-5507