The androgen receptor (AR) is a critical driver of therapeutic response in patients with metastatic castration- resistant prostate cancer (mCRPC). Androgen deprivation therapy (ADT) and AR-targeting, particularly in combination with microtubule-targeting taxane chemotherapy, offers survival benefits in mCRPC patients. However, therapeutic resistance invariably develops, leading to mortality. Understanding the mechanisms underlying resistance is critical to improving therapeutic outcomes. Our work and others' established that AR nuclear localization is inhibited by docetaxel (1st line taxane chemotherapy) in androgen-sensitive prostate tumors. In contrast, CRPCs express AR splice variants that remain capable of nuclear trafficking, contributing to taxane resistance. Signaling interactions between androgens/AR and transforming growth factor-? (TGF-?) determine prostate tumor growth and invasion by regulating apoptosis and epithelial-mesenchymal transition (EMT). We recently found that cabazitaxel (2nd line taxane chemotherapy) can reverse EMT, resulting in a mesenchymal-epithelial transition (MET) and kinesin-mediated multi-nucleation, without affecting nuclear AR in in vitro and in vivo prostate cancer models. This work provided the first evidence that cabazitaxel induces phenotypic changes leading to prostate tumor re-differentiation (in addition to apoptosis) dictated by androgens and TGF-?. Here, we hypothesize that treatment with cabazitaxel causes apoptosis in some prostate tumor cells but also diversifies surviving cells into a re-differentiated state (via MET) that confers therapeutic resistance while retaining AR and kinesin activity. We will test this hypothesis by assessing if MET-mediated phenotypic reprogramming of prostate cancer epithelial cells drives therapeutic resistance to taxane chemotherapy/ADT combinations, and if this resistance can be overcome by TGF-? blockade.
Three Specific Aims will be addressed:
Specific Aim 1 will delineate the role of AR cross-talk with TGF-? in programming prostate tumor MET in response to cabazitaxel in models of CRPC.
Specific Aim 2 will determine the mechanisms via which prostate tumor cells undergo taxane-mediated re-differentiation to overcome therapeutic resistance in pre-clinical models of advanced prostate cancer.
Specific Aim 3 will test the effect of inhibition of kinesins and centrosome clustering on microtubule-facilitated AR degradation, to sensitize prostate tumors to cabazitaxel. The proposed project will provide new insights into the contribution of TGF-?, AR, and kinesins in taxane-mediated phenotypic changes and define treatment sequencing to overcome resistance in recurrent disease.

Public Health Relevance

Our goal is to overcome the therapeutic cross-resistance to 2nd line taxane chemotherapy and androgen- deprivation therapy (ADT) or androgen-receptor (AR) targeting therapy in advanced metastatic prostate cancer. This project will examine the consequences of cabazitaxel treatment on reversion of epithelial- mesenchymal-transition (EMT) to mesenchymal-epithelial-transition (MET) on the tumor glandular re- differentiation in pre-clinical models of prostate cancer progression to advanced disease (models will include androgen sensitive tumors and castration-resistant prostate cancer, CRPC). Profiling the EMT phenotypic and mechanistic programming by taxane chemotherapy, antiandrogens and TGF?, will enable new insights into sequencing treatment strategies of ADT, cabazitaxel and TGF-? blockade to overcome therapeutic resistance in CRPC, impair lethal prostate cancer and thus impact patient survival.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
1R01CA232574-01A1
Application #
9763943
Study Section
Drug Discovery and Molecular Pharmacology Study Section (DMP)
Program Officer
Venkatachalam, Sundaresan
Project Start
2019-02-01
Project End
2019-06-30
Budget Start
2019-02-01
Budget End
2019-06-30
Support Year
1
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of Kentucky
Department
Urology
Type
Schools of Medicine
DUNS #
939017877
City
Lexington
State
KY
Country
United States
Zip Code
40526