Bone metastasis remains a major cause of death among patients with prostate cancer. Unfortunately, current treatments for bone metastases are mainly palliative. A major complication of bone metastasis is bone pain. Although several lines of study have suggested that nerves have a role in cancer progression, and that bone pain and overall survival are negatively correlated, the mechanisms involved remain elusive. We have found that: 1) cancer metastasis to bone or metastatic bone disease enriches sensory nerves that express the neuropeptide calcitonin gene-related peptide (CGRP) in the bone, and that causes bone pain; 2) bone-metastatic cancer cells express elevated levels of calcitonin-receptor like receptor (CRLR); 3) CGRP induces cancer proliferation through the CRLR/p38 pathway; 4) activated FMS-like tyrosine kinase 3 receptor (Flt3) is present in the dorsal root ganglia of mice presenting bone pain indicators; 5) bone-metastatic cancer cells express elevated levels of the Flt3 ligand (FL); and 6) FL induces the sprouting of sensory nerves. We therefore hypothesize that (a) FL derived from bone-metastatic prostate cancer stimulates sensory nerves through Flt3, resulting in cancer-induced bone pain; and (b) CGRP expressed by cancer-associated sensory nerves induces progression of metastatic bone disease through the CRLR/p38 pathway. In this R01 proposal, submitted in response to PAR-16-245, we will: (1) Determine whether bone-metastatic cancer cells increase sensory nerve sprouting and CGRP synthesis in sensory nerves, contributing to cancer-induced bone pain, through the FL/Flt3 axis; and (2) Determine whether CGRP expressed by sensory nerves in bone-metastatic lesions stimulate bone metastatic outgrowth through CRLR/p38. Using an in vitro primary dorsal root ganglia culture system and a unique mouse model of cancer-induced bone pain, will allow us to measure within the same animal: (i) tumor growth, (ii) skeletal innervation, (iii) bone remodeling, and (iv) resultant pain behaviors. Using bone biopsies from patients, we will probe the molecular mechanisms whereby the crosstalk between bone metastatic cancer and sensory nerves controls both progression of bone metastases and development of associated pain. We will use these results to develop a new therapeutic strategy targeting cancer/nerve interactions. In the short term, this study will elucidate new mechanisms of bone metastasis and cancer-induced bone pain. In the long run, a better understanding of how metastatic progression and pain signals influence one another to worsen disease progression will aid in discovering new therapeutic targets for both cancer-induced bone pain and bone metastatic cancer ? areas in which current therapies are wanting ? to decrease suffering and improve the survival of cancer patients with bone metastases.

Public Health Relevance

The goal of this proposal is to reveal 1) how cancer cells induce painful complications of bone metastases, and 2) the mechanisms whereby pain signals promote the growth of bone metastatic cancer cells. We will also block this cancer-nerve interaction to treat bone metastases and its painful complication. This study will provide insights into the roles of sensory nerves in bone metastatic progression, and safer and more effective treatment strategies for bone metastases and associated pain.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA238888-02
Application #
10120655
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Jhappan, Chamelli
Project Start
2020-03-05
Project End
2025-02-28
Budget Start
2021-03-01
Budget End
2022-02-28
Support Year
2
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Wake Forest University Health Sciences
Department
Biology
Type
Schools of Medicine
DUNS #
937727907
City
Winston-Salem
State
NC
Country
United States
Zip Code
27157