Cannabinoid CB1 receptor agonists have been shown to have many therapeutic uses such as neuroprotection, analgesia and appetite stimulation. Cannabinoid antagonists have been shown to be effective against obesity and metabolic syndrome. Despite these and many other therapeutic uses for cannabinoids, FDA approval of cannabinoid drugs has been hampered because agonists produce psychoactivity and dependence and antagonists produce depression and possibly suicidal ideation. There have been thousands of cannabinoid compounds synthesized that targeted the CB1 orthosteric binding pocket, with no success at elimination of untoward effects. We propose here a multidisciplinary approach to overcome the issues with CB1 orthosteric pocket-targeted drugs via the development of functionally selective cannabinoids that target accessory/non-traditional ligand binding sites that are topographically distinct from orthosteric sites or by focusing on allosteric sites at which allosteric modulators themselves are selective in what signal they modulate. The research plan is based upon novel lead compounds that have emerged during the current funding period from computational studies of the CB1 receptor and our close collaborative studies with experimental medicinal chemists, molecular biologists and pharmacologists.

Public Health Relevance

The use of cannabis (marihuana) has been legalized in several states now, particularly for medicinal purposes. While there is no scientific debate concerning the many medically beneficial effects produced by marijuana, there is always the reservation that this substance also produces psychoactivity and dependence. FDA approval of cannabinoid drugs has been hampered precisely because cannabinoid agonists produce psychoactivity and dependence, while cannabinoid antagonists (e.g., Rimonabant) produce depression and possibly suicidal ideation. The goal of this proposed project is to develop medically beneficial cannabinoid compounds that can bypass the untoward effects produced by marihuana or cannabinoid antagonists such as, Rimonabant by activating/deactivating only one signaling pathway, the beta-arrestin pathway. Novel lead compounds developed during the current period of support suggest that such a separation may be possible.

National Institute of Health (NIH)
National Institute on Drug Abuse (NIDA)
Research Project (R01)
Project #
Application #
Study Section
Molecular Neuropharmacology and Signaling Study Section (MNPS)
Program Officer
Hillery, Paul
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Carolina Greensboro
Schools of Arts and Sciences
United States
Zip Code
Morales, Paula; Isawi, Israa; Reggio, Patricia H (2018) Towards a better understanding of the cannabinoid-related orphan receptors GPR3, GPR6, and GPR12. Drug Metab Rev 50:74-93
Ragusa, Giulio; Bencivenni, Serena; Morales, Paula et al. (2018) Synthesis, Pharmacological Evaluation, and Docking Studies of Novel Pyridazinone-Based Cannabinoid Receptor Type?2 Ligands. ChemMedChem 13:1102-1114
Morales, Paula; Reggio, Patricia H; Jagerovic, Nadine (2017) An Overview on Medicinal Chemistry of Synthetic and Natural Derivatives of Cannabidiol. Front Pharmacol 8:422
Morales, Paula; Hurst, Dow P; Reggio, Patricia H (2017) Methods for the Development of In Silico GPCR Models. Methods Enzymol 593:405-448
Lynch, Diane L; Hurst, Dow P; Shore, Derek M et al. (2017) Molecular Dynamics Methodologies for Probing Cannabinoid Ligand/Receptor Interaction. Methods Enzymol 593:449-490
Morales, Paula; Hurst, Dow P; Reggio, Patricia H (2017) Molecular Targets of the Phytocannabinoids: A Complex Picture. Prog Chem Org Nat Prod 103:103-131
Seltzman, Herbert H; Maitra, Rangan; Bortoff, Katharine et al. (2017) Metabolic Profiling of CB1 Neutral Antagonists. Methods Enzymol 593:199-215
Carter, Patrick M; Cook, Lawrence J; Macy, Michelle L et al. (2017) Individual and Neighborhood Characteristics of Children Seeking Emergency Department Care for Firearm Injuries Within the PECARN Network. Acad Emerg Med 24:803-813
Laprairie, Robert B; Kulkarni, Abhijit R; Kulkarni, Pushkar M et al. (2016) Mapping Cannabinoid 1 Receptor Allosteric Site(s): Critical Molecular Determinant and Signaling Profile of GAT100, a Novel, Potent, and Irreversibly Binding Probe. ACS Chem Neurosci 7:776-98
Morales, Paula; Gómez-Cañas, María; Navarro, Gemma et al. (2016) Chromenopyrazole, a Versatile Cannabinoid Scaffold with in Vivo Activity in a Model of Multiple Sclerosis. J Med Chem 59:6753-6771

Showing the most recent 10 out of 66 publications