Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Project (R01)
Project #
5R01DA009256-02
Application #
2122364
Study Section
Special Emphasis Panel (SRCD (54))
Project Start
1995-07-01
Project End
1998-05-31
Budget Start
1996-06-01
Budget End
1997-05-31
Support Year
2
Fiscal Year
1996
Total Cost
Indirect Cost
Name
East Carolina University
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
City
Greenville
State
NC
Country
United States
Zip Code
27858
Sun, Wei-Lun; Zelek-Molik, Agnieszka; McGinty, Jacqueline F (2013) Short and long access to cocaine self-administration activates tyrosine phosphatase STEP and attenuates GluN expression but differentially regulates GluA expression in the prefrontal cortex. Psychopharmacology (Berl) 229:603-13
McGinty, J F (1999) Regulation of neurotransmitter interactions in the ventral striatum. Ann N Y Acad Sci 877:129-39
Meshul, C K; Emre, N; Nakamura, C M et al. (1999) Time-dependent changes in striatal glutamate synapses following a 6-hydroxydopamine lesion. Neuroscience 88:1-16
Gray, A M; Rawls, S M; Shippenberg, T S et al. (1999) The kappa-opioid agonist, U-69593, decreases acute amphetamine-evoked behaviors and calcium-dependent dialysate levels of dopamine and glutamate in the ventral striatum. J Neurochem 73:1066-74
Rawls, S M; Mcginty, J F (1998) Muscarinic receptors regulate extracellular glutamate levels in the rat striatum: an in vivo microdialysis study. J Pharmacol Exp Ther 286:91-8
Meshul, C K; Noguchi, K; Emre, N et al. (1998) Cocaine-induced changes in glutamate and GABA immunolabeling within rat habenula and nucleus accumbens. Synapse 30:211-20
Rawls, S M; McGinty, J F (1998) Kappa receptor activation attenuates L-trans-pyrrolidine-2,4-dicarboxylic acid-evoked glutamate levels in the striatum. J Neurochem 70:626-34
Keys, A S; Mark, G P; Emre, N et al. (1998) Reduced glutamate immunolabeling in the nucleus accumbens following extended withdrawal from self-administered cocaine. Synapse 30:393-401
Rawls, S M; McGinty, J F (1997) L-trans-pyrrolidine-2,4-dicarboxylic acid-evoked striatal glutamate levels are attenuated by calcium reduction, tetrodotoxin, and glutamate receptor blockade. J Neurochem 68:1553-63