Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Project (R01)
Project #
5R01DA009366-02
Application #
2122543
Study Section
Drug Abuse Biomedical Research Review Committee (DABR)
Project Start
1995-03-15
Project End
2000-01-31
Budget Start
1996-02-01
Budget End
1997-01-31
Support Year
2
Fiscal Year
1996
Total Cost
Indirect Cost
Name
New York State Psychiatric Institute
Department
Type
DUNS #
167204994
City
New York
State
NY
Country
United States
Zip Code
10032
Girod, Romain; Jareb, Mark; Moss, Jason et al. (2003) Mapping of presynaptic nicotinic acetylcholine receptors using fluorescence imaging of neuritic calcium. J Neurosci Methods 122:109-22
Jo, Young-Hwan; Role, Lorna W (2002) Coordinate release of ATP and GABA at in vitro synapses of lateral hypothalamic neurons. J Neurosci 22:4794-804
Du, C; Role, L W (2001) Differential modulation of nicotinic acetylcholine receptor subtypes and synaptic transmission in chick sympathetic ganglia by PGE(2). J Neurophysiol 85:2498-508
Girod, R; Role, L W (2001) Long-lasting enhancement of glutamatergic synaptic transmission by acetylcholine contrasts with response adaptation after exposure to low-level nicotine. J Neurosci 21:5182-90
Barazangi, N; Role, L W (2001) Nicotine-induced enhancement of glutamatergic and GABAergic synaptic transmission in the mouse amygdala. J Neurophysiol 86:463-74
Wolpowitz, D; Mason, T B; Dietrich, P et al. (2000) Cysteine-rich domain isoforms of the neuregulin-1 gene are required for maintenance of peripheral synapses. Neuron 25:79-91
Girod, R; Barazangi, N; McGehee, D et al. (2000) Facilitation of glutamatergic neurotransmission by presynaptic nicotinic acetylcholine receptors. Neuropharmacology 39:2715-25
Girod, R; Crabtree, G; Ernstrom, G et al. (1999) Heteromeric complexes of alpha 5 and/or alpha 7 subunits. Effects of calcium and potential role in nicotine-induced presynaptic facilitation. Ann N Y Acad Sci 868:578-90
Xu, W; Gelber, S; Orr-Urtreger, A et al. (1999) Megacystis, mydriasis, and ion channel defect in mice lacking the alpha3 neuronal nicotinic acetylcholine receptor. Proc Natl Acad Sci U S A 96:5746-51
Flood, P; Ramirez-Latorre, J; Role, L (1997) Alpha 4 beta 2 neuronal nicotinic acetylcholine receptors in the central nervous system are inhibited by isoflurane and propofol, but alpha 7-type nicotinic acetylcholine receptors are unaffected. Anesthesiology 86:859-65