Nicotinic acetylcholine receptors (nAChRs) can modify synaptic transmission in many brain regions. Our recent studies show that nAChRs contribute to midbrain dopamine (DA) neuron excitability through modulation of both inhibitory GABAergic and excitatory glutamatergic inputs. The nAChR enhancement of glutamate inputs can contribute to LTP induction at this synapse. Interestingly, the nicotinic modulation of GABA transmission exhibits a transient enhancement, followed by a depression of activity. Apparently, desensitization of the nAChRs on GABA neurons inhibits endogenous cholinergic input to these cells, thus leading to a 'disinhibition' of the DA neurons. These studies were carried out in neonatal rats, primarily for technical reasons. Experiments in this proposal will extend these tests to tissue slices from adult rats that have undergone behavioral and pharmacological testing. The activity that an animal displays in a novel environment can predict nicotine self-administration in rats. The advantage of this screen is that animals predisposed to nicotine self-administration can be identified without nicotine exposure, which is known to alter sensitivity. Our preliminary results indicate differences in nAChR expression between high and low responders to novelty. We will extend these observations to test the differences in cellular and synaptic effects of nAChR activation associated with the predisposition to nicotine self-administration. The activity response to novelty has also been correlated with differences in stress hormone levels between individuals, leading to the suggestion that stress hormones contribute to the predisposition to drug-taking. Preliminary data indicate that stress hormones inhibit nAChRs through a direct interaction. We will test the hypothesis that this interaction upregulates the expression of nAChRs within the reward area, strengthens the cellular response to nicotine and thus, enhances the motivating effects of the drug. Nicotine exposure also enhances the acquisition of self-administration behavior, presumably through upregulation of nAChR expression. We will test nAChR effects on DA neuron excitability from animals that have been pre-exposed to nicotine by passive injection and self-administration testing. These studies of nAChR function within the brain reward center will provide important insights into the cellular basis of addiction. ? ?
Showing the most recent 10 out of 19 publications