The continued use of psychostimulants, such as amphetamine and cocaine results in addiction that is associated with strong cravings and persistent drug-seeking behaviors. Psychostimulants induce addiction in part by increasing activity of DA neurons in reward pathways of the brain and their abuse potential is closely correlated with their affinity for the dopamine transporter (DAT). Although the DAT has a confirmed role in transporting extracellular DA back into nerve terminals, new data demonstrates that DAT also gates an intrinsic chloride (Cl-) channel that increases excitability of DA neurons. To date the physiological role of this DAT-mediated Cl- channel is not known, but the current could potentially modulate psychostimulant drug addiction. The studies in this proposal are the first to characterize this channel in dendrites of midbrain DA neurons using electrophysiology and imaging of a fluorescent biosensor (YFPQS) that is sensitive to changes in intracellular Cl- concentrations ([Cl-int]). We will test the hypothesis that activation of the DAT increases [Cl-int] in DA neurons and that the change in [Cl-int] increases the firing rate of DA neurons. We will also determine the relationship between activation of the Cl- channel and Cl- flux associated with the transport of DA by DAT. Finally, we will test the hypothesis that the DAT-mediated Cl- current modulates the amplitudes of GABA and glutamate-mediated synaptic currents on DA neurons. These studies will provide important information on the specific role(s) of this intrinsic DAT Cl- channel in modulating the activity of DA neurons in reward pathways. Transporter-mediated conductances represent novel and unexplored avenues for cellular mechanisms of psychostimulant action and these studies may also serve to identify a novel target for the treatment of drug addiction. Psychostimulant addiction is associated with an increase in DA signaling in reward pathways of the brain via interactions at the dopamine transporter (DAT). Recent evidence shows that DAT activates an intrinsic chloride channel in addition to transporting DA. Experiments in this proposal will use simultaneous electrophysiology and fluorescence imaging to determine the physiological role of this chloride channel in modulating activity of DA neurons in midbrain reward pathways.