The goal of this proposal is to understand cellular stress responses in HIV infection, and their relationship to circulating exosome cargo. In preliminary studies using samples and clinical data from cohorts of predominantly male African-American subjects with HIV infection, cocaine use was associated with increased markers of inflammation, oxidative stress, mitochondrial dysfunction, and altered monoamine metabolism. Plasma exosomes and exosome-associated HSP70 were also increased in HIV+ cocaine users compared to HIV- controls. Furthermore, we identified plasma exosome miRNAs in HIV+ cocaine users that were also induced during cell stress responses in cell culture models. Based on preliminary data and predicted network models, we hypothesize that HIV infection induces cellular stress responses as a consequence of inflammation, oxidative stress, mitochondrial dysfunction, and altered monoamine metabolism. Cocaine augments these cellular stress responses through effects on catecholamines and dopamine, which increase energy demands, mitochondrial dysfunction, and oxidative stress. Transcriptional and epigenetic regulators including REST, PGC-1alpha, and sirtuins are predicted to play key roles in regulating these cellular stress response networks and modulating cocaine-related effects on cells. Exosomes and other microvesicles released during cell stress responses contain protein and RNA cargo that represent potential biomarkers of these stress responses. To address this hypothesis, we propose integrated biology approaches using clinical samples and data to characterize exosomes and cellular stress responses in racially diverse cohorts of HIV+ subjects with and without cocaine use, and their relationship to clinical data. Integrative analysis of plasma exosome cargo, gene and miRNA expression profiles, inflammation and oxidative stress markers, metabolomics, and virological and immunological data along with targeted experimentation will be used to build, test, and refine models of networks and pathways involved in mediating cellular stress responses in HIV infection and their relationship to exosome cargo.

Public Health Relevance

This project will use large clinical and biological datasets, computational modeling, and integrated biology approaches to identify key regulatory networks and pathways involved in cellular stress responses in racially diverse cohorts with HIV infection and their relationship to circulating exosomes and other markers of stress responses. The studies will provide insights into mechanisms and biomarkers of cellular stress responses, which is relevant for developing strategies to improve clinical outcomes in HIV-infected populations. The studies will also provide a better understanding of mechanisms by which cocaine may have adverse effects on cellular stress responses in HIV-infected people by increasing energy demands and oxidative stress.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Project (R01)
Project #
5R01DA040391-05
Application #
9653168
Study Section
Special Emphasis Panel (ZDA1)
Program Officer
Satterlee, John S
Project Start
2015-05-01
Project End
2021-02-28
Budget Start
2019-03-01
Budget End
2021-02-28
Support Year
5
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215