Structure-function characterization of a key protein component of the endocannabinoid system, the human cannabinoid receptor 1 (CB1), is the central focus of this research proposal.
It aims to develop a fundamental understanding of the structural basis of CB1 function, with the ultimate translational goal of establishing a robust structure-based drug design (SBDD) program based on experimentally determined 3-dimensional structures. The endocannabinoid system is a complex network of lipid ligands, receptors, and metabolic enzymes involved in a wide range of important physiological processes, including nociception, inflammation, sleep, and drug addiction. As with other G protein coupled receptors, CB1 can exhibit preferential signaling events in response to different ligands. This functional selectivity offers the opportunity to discover new medications with improved pharmacological profiles, enhanced therapeutic properties and reduced side effects. The study will provide the structural basis for the design and development of functionally distinct CB1 selective compounds as useful pharmacological tools and/or leads for the future development of therapeutics. Several crystal structures will be solved to better understand molecular recognition, signaling, and to assist in the design of novel compounds that could then serve as prototypes for later generation leads and drug candidates. The study has three specific aims: (1) Design and synthesize covalent ligands representing key classes of cannabinergic ligands that have been shown to have distinct functional profiles, (2) Develop a better understanding of the CB1 orthosteric binding site by solving the 3D structure of several receptor-ligand complexes, and (3) Develop a better understanding of the CB1 active state by solving the structure of the CB1 signaling complex.

Public Health Relevance

The study focuses on the cannabinoid receptor 1, which is an important component of the endocannabinoid system, a complex network of lipid ligands, receptors, and metabolic enzymes involved in a wide range of important physiological/pathophysiological processes, including nociception, inflammation, sleep, and drug addiction. Results from the proposed work should form the basis for the design of novel medications with improved pharmacological profiles and reduced side effects for the treatment of medical conditions such as addiction and pain management.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Project (R01)
Project #
5R01DA041435-05
Application #
10001488
Study Section
Biochemistry and Biophysics of Membranes Study Section (BBM)
Program Officer
Rapaka, Rao
Project Start
2016-09-15
Project End
2021-06-30
Budget Start
2020-07-01
Budget End
2021-06-30
Support Year
5
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Southern California
Department
Other Basic Sciences
Type
Schools of Arts and Sciences
DUNS #
072933393
City
Los Angeles
State
CA
Country
United States
Zip Code
90089
Finlay, David B; Cawston, Erin E; Grimsey, Natasha L et al. (2017) G?s signalling of the CB1 receptor and the influence of receptor number. Br J Pharmacol 174:2545-2562
Hua, Tian; Vemuri, Kiran; Nikas, Spyros P et al. (2017) Crystal structures of agonist-bound human cannabinoid receptor CB1. Nature 547:468-471
Hua, Tian; Vemuri, Kiran; Pu, Mengchen et al. (2016) Crystal Structure of the Human Cannabinoid Receptor CB1. Cell 167:750-762.e14