This study is directed at identifying and characterizing the physiological roles of gap junctions in the olfactory epithelium. New data have shown that olfactory receptor neurons are coupled to one another and possibly to non-neuronal cells in the olfactory epithelium of Necturus maculosus. Coupling was revealed by dye-transfer, by electrical measurements and by antibody labeling. Because gap junctions can be regulated by second messenger-dependent mechanisms, and because the same intracellular messengers that are elevated during odor transduction can activate these mechanisms, coupling of olfactory neurons to other cells in the olfactory epithelium is expected to be modulated during odor transduction. Changes in coupling could affect odor sensitivity. Studies are proposed (1) to examine the extent of intercellular coupling in the epithelium using dye-transfer with Neurobiotin(TM) and Lucifer yellow, (2) to identify the subtypes of gap junction proteins in the olfactory epithelium and their distributions by cloning and the use of molecular techniques, and (3) to evaluate the pathways that regulate olfactory gap junctions using dye-tracer and electrophysiological methods. Gap junctions are now known to be common throughout the nervous system and to have important functional consequences, but our understanding of their physiological roles is poor. These studies should provide greater knowledge of both the olfactory system and of gap junctions, a basic interneuronal feature that occurs throughout the central nervous system.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
1R01DC003146-01
Application #
2014725
Study Section
Sensory Disorders and Language Study Section (CMS)
Project Start
1997-01-01
Project End
1999-12-31
Budget Start
1997-01-01
Budget End
1997-12-31
Support Year
1
Fiscal Year
1997
Total Cost
Indirect Cost
Name
Boston University
Department
Type
Schools of Arts and Sciences
DUNS #
604483045
City
Boston
State
MA
Country
United States
Zip Code
02118
Delay, Rona J; Dionne, Vincent E (2003) Coupling between sensory neurons in the olfactory epithelium. Chem Senses 28:807-15