: Oscillation occurs widely in the nervous system but its functional significance is largely unknown. The goal oi the proposed research is to advance our understanding of the origin and functional significance of oscillation (particularly fast oscillation) in the auditory system. Pilot studies in the inferior colliculus [1C] of frogs and echolocating bats have revealed that in response to brief tone pips some IC neurons display rapid oscillatory discharges and/or paradoxical latency shift. Further, there are indications that the oscillatory discharge is presumably due to unit's intrinsic resonance and responsible for creating paradoxical latency shift, a phenomenon previously shown to be important for time domain analysis. These findings suggest that rapid oscillation in the IC may be involved in temporal processing.
Three specific aims will be addressed.
Aim #1 will determine how prevalent is oscillation in the IC and the stimulation condition under which oscillatory discharges and/or paradoxical latency shift occur. Single unit recordings will be made from the IC to test two working hypotheses: (i) IC neurons exhibit oscillatory discharges when they are appropriately stimulated, (ii) oscillatory discharge is more robust when GABAergic inhibition is suppressed.
Aim #2 is to determine the functional significance of oscillatory discharges in acoustic signal processing. Physiological experiments will be made from single units in the IC to test the hypothesis that oscillatory discharges play an important role in temporal processing.
Aim #3 is to test the hypothesis that membrane of some IC neurons exhibits intrinsic resonance and this resonance is a foundation for oscillatory discharge and/or paradoxical latency shift. In-vitro intracellular recordings will be made from brain slices to ascertain that some IC neurons exhibit intrinsic resonances under low Ca concentration in the bath. Additionally, in-vivo intracellular recordings will be made from single neurons in the IC that display paradoxical latency shift (as characterized extracellularly) to determine whether this property is created by oscillation in membrane potential.
Showing the most recent 10 out of 14 publications