The proposed research will address unresolved issues regarding the airflow involved in human voice production, focusing on the formation and evolution of jet flows in the glottal and pharyngeal regions. The glottal jet is hypothesized to play a key role in the flow-induced vibration of the vocal folds and in the production of voiced sound, as well as a central role in determining both voice efficiency (through turbulent dissipation) and voice quality (through producing perturbations and fluctuations in voiced sound output). This hypothesis rests on the well-established instability of jet flows, which may lead to variations in the formation and evolution of the jet across vocal fold vibration cycles. A central consideration to the proposed work is, then, to what extent glottal aerodynamics may be considered quasisteady. The degree to which the glottal jet manifests these effects has not yet been directly addressed, in part because what experimental data exists concerning glottal jet behavior was obtained using invasive point measurement techniques. These methods preclude systematic study of cycle-to-cycle variations in both the spatial and temporal structure of the jet. In addition, previous modeling of glottal flow has considered the effect of the jet in a limited manner. The proposed research will address these issues directly, making use of recent advances in computational and experimental fluid dynamics techniques, which have not yet been applied to speech science. In vitro experiments in which the instantaneous particle velocity and acceleration fields of a water flow through a moving vocal fold wall model are successively measured in real time using video Particle Image Velocimetry/Accelerometry (PIV/A). In order to assure spatial and temporal resolution, the glottal model is scaled up and the appropriate Reynolds number and Strouhal number ranges (500

National Institute of Health (NIH)
National Institute on Deafness and Other Communication Disorders (NIDCD)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BBBP-7 (01))
Program Officer
Shekim, Lana O
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Rutgers University
Organized Research Units
New Brunswick
United States
Zip Code
Yang, Jubiao; Yu, Feimi; Krane, Michael et al. (2018) The Perfectly Matched Layer absorbing boundary for fluid-structure interactions using the Immersed Finite Element Method. J Fluids Struct 76:135-152
Yang, Jubiao; Wang, Xingshi; Krane, Michael et al. (2017) Fully-coupled aeroelastic simulation with fluid compressibility - For application to vocal fold vibration. Comput Methods Appl Mech Eng 315:584-606
Zhang, Lucy T; Yang, Jubiao (2016) Evaluation of aerodynamic characteristics of a coupled fluid-structure system using generalized Bernoulli's principle: An application to vocal folds vibration. J Coupled Syst Multiscale Dyn 4:241-250
Zhang, Lucy T (2014) Modeling of Soft Tissues Interacting with Fluid (Blood or Air) Using the Immersed Finite Element Method. J Biomed Sci Eng 7:130-145
Wang, Xingshi; Zhang, Lucy T (2013) Modified Immersed Finite Element Method For Fully-Coupled Fluid-Structure Interations. Comput Methods Appl Mech Eng 267:
Krane, Michael H; Barry, Michael; Wei, Timothy (2010) Dynamics of temporal variations in phonatory flow. J Acoust Soc Am 128:372-83
Krane, Michael; Barry, Michael; Wei, Timothy (2007) Unsteady behavior of flow in a scaled-up vocal folds model. J Acoust Soc Am 122:3659-70
Krane, Michael H (2005) Aeroacoustic production of low-frequency unvoiced speech sounds. J Acoust Soc Am 118:410-27