IinnovatRivecwenatydseovfetlroepamtienngtsanind pcorecvhelenatrinpghsyesniosolorignyeuarnadl mheoalreicnuglalorsbsi.olTohgeysehavdevpanavcesd wthiellwulatyimfoartenleywbeanedfit millions of individuals. However, for this to occur, it will be necessary to develop a safe and reliable Irmeseecahracnhisemffofrotridsetloivdersiingnbaiondacdtievelcopmapvoeurnsdastildeirleocntlgy-tteormthedriungnedreeliavre. ryThseysgteomal fofrththies ctroelalatmboernatiovfeinner ear disorders. Working together, biomedical engineers from Draper Laboratory with experience and expertise IiandthEeadreIvnefliormpmareyntwoifthderuxgpedretilsieveirnyimnniecroesayrsptehmys,ioalondgyc,lipnhiacriamnascaonlodgsyciaendtisottsolforogmic tshuergMeraysswacilhluesnegttisneEeyr,e evaluate and perfect a drug delivery system for the treatment of inner ear disorders. This device will have Ibroad aTpphleicdaetsioignacnodntchepptointecnlutidaelsfoarnriemvpolauntitoednizdienvgictehethtraetaftimtsewntitohfinhtehaerimngasltosisd. cavity of humans. The device contains an externally-programmable pump to recirculate perilymph, an intracochlear catheter inserted Iicnotnoctehnetrsactaeldabtyiomapctainvietchoromupgohuandcso,cahnledosetonmsoyrs, afomr idxeitnegctcinhgamanbdertrwaintshmeixtteinrngaflloywpraongdrapmremssaubrleindfeolirvmeraytiofn. The core of the system is derived from a novel drug dispensing microsystem that the Draper team has Itdersmign(oende, fyaebaricantdedg,raenatdert)esdtedlivoevreyrstyhsetepmas,tcsoenvtearianlinygeatrhse.rTapheutilctrac-omipnoiautnudri,zdeidspdenvsiicnegismaechoamnpislemte,, long- control electronics, and power supply. IcmoinctrionmuToauchhseirnaeiecmdir,scfuolulfaitdthioecnopnorotfrpoaolnsdaylisnatferumesti;o(n3(1)o)efsdcteaovbmelilpsohpusanundrsginicnteatrolfpaprceoercitleoydmtuhrpehsi;na(n2ed)rdeavtresrlmuoipitnaebnledienfvoteircgcerhaftroeordnm,ic,factor Iceaolnendcstrtreroalneianicstse,fmtoerelecimhapentlraiysnm,tatanipodpnsrpoinepcrtihifaeytempfoaowsrteoarirdsaoncuagrvecieoty;f;ac(na4dn)d(d6ied)vaetveloatphluearntaepimsieapsf;elat(yn5t)andbdelevedflfroiucpgaclsoytwoirnapgopewrereleirsmceoirnvnaotriyor,lafnililminagl, Iexperiments, using prototype devices to deliver compounds to the inner ear.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC006848-03
Application #
7367153
Study Section
Special Emphasis Panel (ZRG1-IFCN-G (50))
Program Officer
Donahue, Amy
Project Start
2006-03-15
Project End
2009-07-31
Budget Start
2008-03-01
Budget End
2009-07-31
Support Year
3
Fiscal Year
2008
Total Cost
$855,870
Indirect Cost
Name
Charles Stark Draper Laboratory
Department
Type
DUNS #
066587478
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Tandon, Vishal; Kang, Woo Seok; Robbins, Tremaan A et al. (2016) Microfabricated reciprocating micropump for intracochlear drug delivery with integrated drug/fluid storage and electronically controlled dosing. Lab Chip 16:829-46
Tandon, Vishal; Kang, Woo Seok; Spencer, Abigail J et al. (2015) Microfabricated infuse-withdraw micropump component for an integrated inner-ear drug-delivery platform. Biomed Microdevices 17:37
Kim, Ernest S; Gustenhoven, Erich; Mescher, Mark J et al. (2014) A microfluidic reciprocating intracochlear drug delivery system with reservoir and active dose control. Lab Chip 14:710-21
Pararas, Erin E Leary; Borkholder, David A; Borenstein, Jeffrey T (2012) Microsystems technologies for drug delivery to the inner ear. Adv Drug Deliv Rev 64:1650-60
Pararas, Erin E Leary; Chen, Zhiqiang; Fiering, Jason et al. (2011) Kinetics of reciprocating drug delivery to the inner ear. J Control Release 152:270-7
Borenstein, Jeffrey T (2011) Intracochlear drug delivery systems. Expert Opin Drug Deliv 8:1161-74
McCall, Andrew A; Swan, Erin E Leary; Borenstein, Jeffrey T et al. (2010) Drug delivery for treatment of inner ear disease: current state of knowledge. Ear Hear 31:156-65
Handzel, Ophir; Wang, Haobing; Fiering, Jason et al. (2009) Mastoid cavity dimensions and shape: method of measurement and virtual fitting of implantable devices. Audiol Neurootol 14:308-14
Mescher, Mark J; Swan, Erin E Leary; Fiering, Jason et al. (2009) Fabrication Methods and Performance of Low-Permeability Microfluidic Components for a Miniaturized Wearable Drug Delivery System. J Microelectromech Syst 18:501-510
Sewell, William F; Borenstein, Jeffrey T; Chen, Zhiqiang et al. (2009) Development of a microfluidics-based intracochlear drug delivery device. Audiol Neurootol 14:411-22

Showing the most recent 10 out of 13 publications