The power of spoken language in communication is one of the defining adaptations of the human species, and it depends on the rapid production and perception of speech signals. Songbirds are the most easily studied of the few animal taxa that learn to produce vocal signals for social communication as humans do. Among songbirds, our knowledge of the zebra finch is most advanced. This application proposes to use the properties of auditory neurons in the songbird forebrain to investigate basic neural processes that serve discrimination and memory for auditory communication signals. Young male zebra finches learn their vocalizations from adult tutors through a process of imitation that resembles human speech acquisition. These vocalizations become stereotyped in adulthood and are unique to each individual, providing rich material for quantitative study of the brain processes that serve this natural communication system. Using neurophysiological recording in a forebrain auditory area, the caudo-medial nidopallium (NCM), the P.I. has demonstrated a neuronal form of recognition memory that lasts longer for conspecific than for heterospecific vocal sounds. These long-lasting memories discriminate the unique vocalizations of individual conspecifics, suggesting that NCM plays a special role in processing vocal signals. The significant acoustic and temporal features that distinguish sounds for NCM neurons can be assessed because, in this preparation, repeated presentation of a novel sound results in rapid, quantifiable decreases of the sensory response. When a different sound is presented, the response returns to its initial high level. This is a form of stimulus specific adaptation, reminiscent of similar processes described for the mammalian auditory cortex. The P.I. now proposes to record from NCM in awake zebra finches with advanced physiological methods, including acute and chronic multi-electrode recording, to determine 1) the detailed changes in neural response pattern that accompany memorization of a specific sound signal; 2) the temporal rules that govern the neural processing of more complex sounds composed of syllable sequences, as occurs in song; and 3) the way in which this auditory recognition and memory system is engaged during real-time interaction with conspecifics. The results will not only provide a quantitative description of auditory processing for behaviorally relevant signals in songbirds, but will also shed light on neural processes that link rapid sound sequences into recognizable auditory objects. This is a basic step in decoding speech, as well as song, so these studies may provide useful models for normal and pathological speech processing in humans. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
1R01DC008854-01A1
Application #
7373459
Study Section
Sensorimotor Integration Study Section (SMI)
Program Officer
Platt, Christopher
Project Start
2007-12-01
Project End
2012-11-30
Budget Start
2007-12-01
Budget End
2008-11-30
Support Year
1
Fiscal Year
2008
Total Cost
$304,869
Indirect Cost
Name
Rutgers University
Department
Psychology
Type
Schools of Arts and Sciences
DUNS #
001912864
City
New Brunswick
State
NJ
Country
United States
Zip Code
08901
Yang, L M; Vicario, D S (2015) Exposure to a novel stimulus environment alters patterns of lateralization in avian auditory cortex. Neuroscience 285:107-18
Yoder, Kathleen M; Phan, Mimi L; Lu, Kai et al. (2015) He hears, she hears: are there sex differences in auditory processing? Dev Neurobiol 75:302-14
Bell, Brittany A; Phan, Mimi L; Vicario, David S (2015) Neural responses in songbird forebrain reflect learning rates, acquired salience, and stimulus novelty after auditory discrimination training. J Neurophysiol 113:1480-92
Lu, Kai; Vicario, David S (2014) Statistical learning of recurring sound patterns encodes auditory objects in songbird forebrain. Proc Natl Acad Sci U S A 111:14553-8
Tsoi, Shuk C; Aiya, Utsav V; Wasner, Kobi D et al. (2014) Hemispheric asymmetry in new neurons in adulthood is associated with vocal learning and auditory memory. PLoS One 9:e108929
Velho, Tarciso A F; Lu, Kai; Ribeiro, Sidarta et al. (2012) Noradrenergic control of gene expression and long-term neuronal adaptation evoked by learned vocalizations in songbirds. PLoS One 7:e36276
Yoder, Kathleen M; Vicario, David S (2012) To modulate and be modulated: estrogenic influences on auditory processing of communication signals within a socio-neuro-endocrine framework. Behav Neurosci 126:17-28
Yoder, Kathleen M; Lu, Kai; Vicario, David S (2012) Blocking estradiol synthesis affects memory for songs in auditory forebrain of male zebra finches. Neuroreport 23:922-6
Phan, Mimi L; Vicario, David S (2010) Hemispheric differences in processing of vocalizations depend on early experience. Proc Natl Acad Sci U S A 107:2301-6