The excitement about neural stem cells arises in large part from the hope that they can be harnessed therapeutically to repair diseased brains. Very little is known, however, about how these new neurons integrate into existing brain circuits by making appropriate connections - this process can be compared to changing the wheels of a car while it is running. In addition, major questions of how adult neurogenesis and functional integration are regulated by local factors as well as by an animal's experience remain largely unanswered. In this proposal, we will conduct innovative experiments to investigate how new neurons are integrated into synaptic circuits in the mouse olfactory bulb. The rodent olfactory bulb is an excellent model system because of the high rate of neurogenesis, its accessibility, modular organization and behavioral relevance. We will describe the natural history of adult-born neurons in their native environment by imaging their morphology and function at high resolution in the intact brains of living mice using multiphoton laser scanning microscopy. We will also begin to uncover the cellular and molecular processes involved in the functional integration of new neurons into existing circuits using genetic perturbations. To achieve our goals, we will use stereotaxic viral injections, genetically-encoded calcium indicators and chronic multiphoton microscopy to examine in real time how newborn granule cells develop their morphological and functional properties. By tracking identified neurons over several weeks using time-lapse imaging in vivo, we will be able to uncover structural and functional changes that are not visible to conventional methods that obtain single snapshots in each animal. We will alter the odor experience of mice in a """"""""critical"""""""" period during which labeled newborn cells are integrated into the bulb and investigate how this alters their functional properties and their survival. Experiments in this project will be guided by three Aims.
Aim 1 : To determine the time evolution of sensory responses of identified adult-born neurons over their development using multiphoton microscopy.
Aim 2 : To determine how sensory experience affects the functional properties of adult-born neurons cells and their survival.
Aim 3 : To determine the cellular and molecular mechanisms in the refinement of functional properties of adult-born neurons. The research proposed here will provide a deeper understanding about how newborn cells find appropriate synaptic partners and integrate into the adult brain. Insights gained from this study will inform efforts to treat human brain disorders using neuron replacement therapies.

Public Health Relevance

Developing successful strategies for brain repair based on cell-replacement requires an understanding of how newly generated neurons integrate into pre-existing, functioning neural circuits in the adult brain. The research proposed here will provide a deeper understanding of how newborn cells find appropriate synaptic partners and integrate into the adult brain, and how this integration can be modulated by experience.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC013329-02
Application #
8677874
Study Section
Neurodifferentiation, Plasticity, and Regeneration Study Section (NDPR)
Program Officer
Sullivan, Susan L
Project Start
2013-07-01
Project End
2018-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
2
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Harvard University
Department
Microbiology/Immun/Virology
Type
Schools of Arts and Sciences
DUNS #
City
Cambridge
State
MA
Country
United States
Zip Code
02138
Galliano, Elisa; Franzoni, Eleonora; Breton, Marine et al. (2018) Embryonic and postnatal neurogenesis produce functionally distinct subclasses of dopaminergic neuron. Elife 7:
Wallace, Jenelle L; Wienisch, Martin; Murthy, Venkatesh N (2018) Development and Refinement of Functional Properties of Adult-Born Neurons. Neuron 97:727
Wallace, Jenelle L; Wienisch, Martin; Murthy, Venkatesh N (2017) Development and Refinement of Functional Properties of Adult-Born Neurons. Neuron 96:883-896.e7
Wienisch, Martin; Murthy, Venkatesh N (2016) Population imaging at subcellular resolution supports specific and local inhibition by granule cells in the olfactory bulb. Sci Rep 6:29308
Kapoor, Vikrant; Provost, Allison C; Agarwal, Prateek et al. (2016) Activation of raphe nuclei triggers rapid and distinct effects on parallel olfactory bulb output channels. Nat Neurosci 19:271-82
Hochbaum, Daniel R; Zhao, Yongxin; Farhi, Samouil L et al. (2014) All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat Methods 11:825-33