The ability to detect various chemicals and to use this information to make feeding decisions is a defining feature of the taste system from humans to insects. In Drosophila, a large family of Gustatory receptor (Gr) genes encodes divergent receptors that are expressed in taste neurons. Despite ongoing efforts, we know little about the ligand response profiles of individual Gr proteins in any insect. Gr proteins represent a novel family, distantly related only to insect Odorant receptor (Or) proteins, and thus lack the advantage of structural or functional comparisons with equivalent groups. The same feature of exclusivity in insects and arthropods, however, makes Grs attractive targets for developing novel strategies of insect control. In preliminary studies, we have developed an in vivo functional expression system in which to identify the response properties of individual insect Grs. The overarching objective of this proposal is to elucidate functional properties of individual taste receptors in Drosophila and the malaria mosquito Anopheles gambiae, and their role in instructing feeding behavior. We propose to systematically characterize the tuning profiles of selected taste receptors of the fruit fly and the mosquito by taking advantage of our ectopic expression system. The experiments are designed to reveal fundamental features of Gr function including the activation and inhibition profiles of individual receptors, the extent of functional overlap between receptors, and the relationship between receptor sequence and function. The approach to address these questions will be to: 1) Identify the tuning profiles of internally expressed Drosophila taste receptors, and evaluate their roles in feeding behavior by genetic analysis, 2) Characterize novel cross-modality interactions between Drosophila sweet taste receptors and bitter tastants, and examine the functional role of sweet taste neuron inhibition in feeding behavior, and 3) Identify activators and inhibitors of putative sweet taste receptors of An. gambiae and characterize the response profiles of endogenous sweet taste neurons in the mosquito proboscis. The proposed research is innovative because it employs a novel in vivo ectopic expression system for decoding Gr function and combines it with molecular genetics, electrophysiological, and behavioral analyses of gustatory function. The research is significant because functional analysis of Gr genes will contribute to our understanding of the fundamental principles by which tastants are encoded across a diverse repertoire of receptors and how mechanisms of tastant detection translate to food selection. Additionally, our studies will shed light on molecular and cellular mechanisms of sugar detection in mosquitoes, which may be applicable for improving sugar-baited traps that are used in mosquito surveillance and control strategies.

Public Health Relevance

Feeding activity of insects is responsible for transmission of deadly diseases such as malaria, dengue fever and West Nile fever, and for billions of dollars in crop losses each year. Detection of compounds by taste receptors plays a significant role in informing the palatability of food sources. The proposed research is relevant to public health because studies of the functional properties of insect taste receptors will be critical for understanding the mechanisms that control insect feeding behavior. Studies of sweet taste receptors in the fly and mosquito may provide novel targets to identify compounds for improving sugar-baited traps, which are used for mosquito surveillance and control.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC013587-04
Application #
9172239
Study Section
Somatosensory and Chemosensory Systems Study Section (SCS)
Program Officer
Sullivan, Susan L
Project Start
2013-12-01
Project End
2018-11-30
Budget Start
2016-12-01
Budget End
2017-11-30
Support Year
4
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of California Riverside
Department
Zoology
Type
Earth Sciences/Resources
DUNS #
627797426
City
Riverside
State
CA
Country
United States
Zip Code
92521
MacWilliam, Dyan; Kowalewski, Joel; Kumar, Arun et al. (2018) Signaling Mode of the Broad-Spectrum Conserved CO2 Receptor Is One of the Important Determinants of Odor Valence in Drosophila. Neuron 97:1153-1167.e4
Chen, Yu-Chieh David; Dahanukar, Anupama (2017) Molecular and Cellular Organization of Taste Neurons in Adult Drosophila Pharynx. Cell Rep 21:2978-2991
Freeman, Erica Gene; Dahanukar, Anupama (2015) Molecular neurobiology of Drosophila taste. Curr Opin Neurobiol 34:140-8
LeDue, Emily E; Chen, Yu-Chieh; Jung, Aera Y et al. (2015) Pharyngeal sense organs drive robust sugar consumption in Drosophila. Nat Commun 6:6667
Freeman, Erica Gene; Wisotsky, Zev; Dahanukar, Anupama (2014) Detection of sweet tastants by a conserved group of insect gustatory receptors. Proc Natl Acad Sci U S A 111:1598-603