Bone sialoprotein (BSP) is one of the major non-collagenous extracellular matrix (ECM) phosphoproteins in bone and dentin. BSP is highly expressed in developing and postnatal regenerating bone, but its precise function is largely unclear. Previous in vitro studies suggest that BSP may be involved in cell attachment, cell migration and calcium-phosphate mineral deposition. We have recently investigated the function of BSP in more complex in vivo environments by implanting BSP with type-I collagen as a carrier into surgically created 8-mm rat cranial defects and thoracic subcutaneous pouches. The results show that BSP-collagen, but not collagen alone, stimulates differentiation of resident responding cells into osteoblasts, followed by synthesis of new bone in the mid-portion of the cranial defects. These responding cells are primarily derived from the dura mater. DNA microarray and quantitative real-time PCR analyses reveal that the expression of specific members of the Wnt and bone morphogenetic protein (BMP) families are up-regulated in the repair cells within cranial BSP-collagen implants compared to those in cranial collagen implants. In contrast, no osteogenesis is observed when BSP-collagen is implanted into rat thoracic subcutaneous tissues. The bioactivity of BSP in stimulating osteoblast differentiation and bone regeneration in a bone defect model is an unprecedented result;however, the mechanisms of BSP-mediated osteogenesis are unknown. In this application we wish to explore the mechanisms for BSP-specific osteogenic action through three specific aims.
Specific Aim 1 will investigate the mechanisms for tissue-specific response to BSP treatment.
Specific Aim 2 will identify key signaling pathways through which BSP stimulates osteoblast differentiation and its ensuing osteogenesis.
Specific Aim 3 will identify BSP-specific osteogenic activities for the repair of cranial defects.

Public Health Relevance

The major goal of this project is to explore the molecular and cellular mechanisms of bone sialoprotein (BSP)- mediated osteogenesis and cranial bone repair. The successful completion of the proposed studies may reveal new information on the biological function of BSP in osteogenesis and possibly lead to improved methods for the treatment of cranial bone defects and BSP-mediated bone diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Dental & Craniofacial Research (NIDCR)
Type
Research Project (R01)
Project #
5R01DE018713-03
Application #
8281359
Study Section
Skeletal Biology Development and Disease Study Section (SBDD)
Program Officer
Wan, Jason
Project Start
2010-07-01
Project End
2015-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
3
Fiscal Year
2012
Total Cost
$294,808
Indirect Cost
$90,500
Name
University of Kansas
Department
Orthopedics
Type
Schools of Medicine
DUNS #
016060860
City
Kansas City
State
KS
Country
United States
Zip Code
66160
Birt, Mitchell C; Anderson, David W; Bruce Toby, E et al. (2017) Osteomyelitis: Recent advances in pathophysiology and therapeutic strategies. J Orthop 14:45-52
Kruger, Thomas E; Miller, Andrew H; Godwin, Andrew K et al. (2014) Bone sialoprotein and osteopontin in bone metastasis of osteotropic cancers. Crit Rev Oncol Hematol 89:330-41
Kruger, Thomas E; Miller, Andrew H; Wang, Jinxi (2013) Collagen scaffolds in bone sialoprotein-mediated bone regeneration. ScientificWorldJournal 2013:812718