We are studying the molecular pathways involved in craniofacial patterning and heart development and their role in the pathology of congenital disease. A large number of congenital malformations affecting infants involve either craniofacial structures or the heart, leading to substantial morbidity and mortality. Interestingly, many congenital syndromes result in abnormalities both in craniofacial development and cardiac development suggesting that the molecular signals involved in the development of these two different organ systems are shared. Yet, the identities and the biological roles of many of these signals are still not well defined. Here, we will develop genetic approaches using both a forward and reverse screen in Xenopus that will be integrated with ongoing cellular and biochemical approaches in our two labs to investigate the genetic control of craniofacial pattern formation and heart development.
Our primary goal is to better understand the basic biology and pathobiology of craniofacial and cardiac development. To this end, we will use the model organism Xenopus tropicalis to conduct forward and reverse genetics screens to generate animal for human disease states and to identify the molecular pathways involved in the development of cardiac and craniofacial tissues.
Showing the most recent 10 out of 35 publications