Streptococcus mutans is the primary etiological agent of dental caries, a costly and ubiquitous health problem worldwide. The ability of this organism to cause disease depends on its abilities to adhere to the tooth surface, form tenacious biofilms and tolerate acid and other detrimental conditions in the oral cavity. We previously showed that the biofilm regulatory protein A (BrpA) plays a major role in regulation of acid- and oxidative-stress tolerance and biofilm formation in S. mutans. Deficiency of BrpA dramatically increased the susceptibility of the deficient mutants to acid-killing and hydrogen peroxide challenge. The BrpA-deficient mutant was able to bind to and form microcolonies on a surface, but failed to accumulate and develop mature biofilms. Predicted as a surface-associated protein, BrpA is a glycoprotein and possesses compositional and structural features that appear to be unique to S. mutans in the oral flora. Therefore, BrpA has great potential as a candidate for drug and vaccine production that may eliminate S. mutans from the plaque without disrupting other beneficial microorganisms in the flora. This study is designed to further investigate BrpA in regards to the (i) cellular location and structure-function relationships, (ii) regulation of expression in response to environmental stimuli, and (iii) role in the adherence, persistence and competitiveness of S. mutans when grown in mixed-species biofilms. The information derived from this study will contribute to a better understanding of the role and the underlying mechanism of BrpA in regulation of S. mutans pathogenicity and will enrich our knowledge on the ecology of the oral flora. More importantly, the data derived from this study could facilitate the design of therapeutic and preventive strategies to combat dental caries and possibly infective endocarditis.

Public Health Relevance

The ability of Streptococcus mutans to cause dental caries depends on its ability to adhere to and form tenacious biofilms on the tooth surface and to tolerate detrimental conditions in the oral cavity. Glycoprotein BrpA in S. mutans plays major roles in environmental stress tolerance and formation of biofilms. This study will further investigate the role and the underlying mechanisms of BrpA in regulation of S. mutans pathogenicity and the potential for targeting BrpA in anti-caries strategy.

Agency
National Institute of Health (NIH)
Institute
National Institute of Dental & Craniofacial Research (NIDCR)
Type
Research Project (R01)
Project #
1R01DE019452-01A2
Application #
7741391
Study Section
Oral, Dental and Craniofacial Sciences Study Section (ODCS)
Program Officer
Lunsford, Dwayne
Project Start
2009-07-01
Project End
2013-06-30
Budget Start
2009-07-01
Budget End
2010-06-30
Support Year
1
Fiscal Year
2009
Total Cost
$355,000
Indirect Cost
Name
Louisiana State Univ Hsc New Orleans
Department
Dentistry
Type
Schools of Dentistry
DUNS #
782627814
City
New Orleans
State
LA
Country
United States
Zip Code
70112
De, Arpan; Jorgensen, Ashton N; Beatty, Wandy L et al. (2018) Deficiency of MecA in Streptococcus mutans Causes Major Defects in Cell Envelope Biogenesis, Cell Division, and Biofilm Formation. Front Microbiol 9:2130
Wen, Zezhang T; Scott-Anne, Kathleen; Liao, Sumei et al. (2018) Deficiency of BrpA in Streptococcus mutans reduces virulence in rat caries model. Mol Oral Microbiol 33:353-363
Lee, Janelle; Townsend, Janice A; Thompson, Tatyana et al. (2018) Analysis of the Cariogenic Potential of Various Almond Milk Beverages using a Streptococcus mutans Biofilm Model in vitro. Caries Res 52:51-57
Besingi, Richard N; Wenderska, Iwona B; Senadheera, Dilani B et al. (2017) Functional amyloids in Streptococcus mutans, their use as targets of biofilm inhibition and initial characterization of SMU_63c. Microbiology 163:488-501
Liao, S; De, A; Thompson, T et al. (2017) Expression of BrpA in Streptococcus mutans is regulated by FNR-box mediated repression. Mol Oral Microbiol 32:517-525
Wen, Zezhang T; Liao, Sumei; Bitoun, Jacob P et al. (2017) Streptococcus mutans Displays Altered Stress Responses While Enhancing Biofilm Formation by Lactobacillus casei in Mixed-Species Consortium. Front Cell Infect Microbiol 7:524
Garcia, S S; Blackledge, M S; Michalek, S et al. (2017) Targeting of Streptococcus mutans Biofilms by a Novel Small Molecule Prevents Dental Caries and Preserves the Oral Microbiome. J Dent Res 96:807-814
De, Arpan; Liao, Sumei; Bitoun, Jacob P et al. (2017) Deficiency of RgpG Causes Major Defects in Cell Division and Biofilm Formation, and Deficiency of LytR-CpsA-Psr Family Proteins Leads to Accumulation of Cell Wall Antigens in Culture Medium by Streptococcus mutans. Appl Environ Microbiol 83:
Bitoun, J P; Wen, Z T (2016) Transcription factor Rex in regulation of pathophysiology in oral pathogens. Mol Oral Microbiol 31:115-24
Wen, Zezhang T; Bitoun, Jacob P; Liao, Sumei (2015) PBP1a-deficiency causes major defects in cell division, growth and biofilm formation by Streptococcus mutans. PLoS One 10:e0124319

Showing the most recent 10 out of 20 publications