The ability to regenerate tissue in mammals has remained elusive. While the use of stem cell populations in the context of bio-scaffolds has shown promise as a potential means of replacing lost, damaged, or diseased tissue, significant challenges remain. An alternative approach is to attempt to evoke a classical in situ regenerative response emulating that seen in lower species such as newts. While this trait was thought to be lost in evolution, our observation (Heber-Katz) that the MRL mouse and related strains have a significant spontaneous regenerative capability demonstrates that the trait is retained in mammals. Studies over the past almost 20 years have culminated in the identification of the HIF-1? (hypoxia inducible factor) pathway as the central actor regulating regeneration in mice. HIF-1? is significantly elevated during the early phases of wound healing in MRL mice and inhibiting HIF-1? with si-RNA blocks regeneration entirely. When we mimicked this HIF-1? response in otherwise non-regenerating Swiss Webster mice the regeneration trait was conferred with the faithful replacement of tissue architecture indistinguishable from normal tissue. This was achieved using the PHD inhibitor 1,4-DPCA in a novel biomaterial construct (Messersmith) leading to the stabilization of high levels of HIF-1? in vivo. In this current proposal, we provide preliminary results suggesting that impressive healing is also seen in a mouse model of periodontal disease, ligature-induced bacterial accumulation leading to an inflammatory host response with bone loss (Hajishengallis model). We show that bone recovers, the periodontal ligament (PDL) is restored, and an unusually robust stem cell response in the tooth pulp and in periodontal tissue is found. We will use advanced molecular design to produce a biomaterial capable of achieving single dose and local delivery vs. the current three-dose delivery system. In addition to yielding a novel soft and bone tissue regeneration therapy, we believe that this system provides an impressive landscape of phenomena that will yield important mechanistic information about in- situ regenerative responses in oral tissues.
In Aim 1, we will create new biomaterials to yield extended drug release to provide a single-dose treatment with rapidly degradable gels;
in Aim 2, we will examine the effect of drug preparations, both original and new, on bone and PDL loss and regrowth using microCT and molecular analysis;
in Aim 3, we will further explore the metabolic response after modulating HIF levels; and in Aim 4, we will determine mechanistic factors involved in the inflammatory, overall immune, and stem cell responses. In conclusion, a successful in-situ drug-induced regenerative therapy would significantly advance the treatment of periodontal disease beyond current surgical procedures.

Public Health Relevance

? Periodontal disease is the main cause of tooth loss, takes a significant toll on patient health and has a major economic impact. Achieving regeneration of oral tissues such as bone and periodontal ligament that are affected by periodontal disease using a drug delivered from an injectable biomaterial would be of major importance in dental medicine and health in general.

Agency
National Institute of Health (NIH)
Institute
National Institute of Dental & Craniofacial Research (NIDCR)
Type
Research Project (R01)
Project #
2R01DE021104-07A1
Application #
9457787
Study Section
Biomaterials and Biointerfaces Study Section (BMBI)
Program Officer
Lumelsky, Nadya L
Project Start
2011-05-01
Project End
2022-08-31
Budget Start
2017-09-15
Budget End
2018-08-31
Support Year
7
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Lankenau Institute for Medical Research
Department
Type
DUNS #
125797084
City
Wynnewood
State
PA
Country
United States
Zip Code
19096
Heber-Katz, Ellen; Messersmith, Phillip (2018) Drug delivery and epimorphic salamander-type mouse regeneration: A full parts and labor plan. Adv Drug Deliv Rev 129:254-261
Heber-Katz, Ellen (2017) Oxygen, Metabolism, and Regeneration: Lessons from Mice. Trends Mol Med 23:1024-1036
Abubacker, Saleem; Ponjevic, Dragana; Ham, Hyun O et al. (2016) Effect of disulfide bonding and multimerization on proteoglycan 4's cartilage boundary lubricating ability and adsorption. Connect Tissue Res 57:113-23
Heber-Katz, Ellen (2015) From Immunity and Vaccines to Mammalian Regeneration. J Infect Dis 212 Suppl 1:S52-8
Galatz, Leesa M; Gerstenfeld, Louis; Heber-Katz, Ellen et al. (2015) Tendon regeneration and scar formation: The concept of scarless healing. J Orthop Res 33:823-31
Zhang, Yong; Strehin, Iossif; Bedelbaeva, Khamilia et al. (2015) Drug-induced regeneration in adult mice. Sci Transl Med 7:290ra92
Zhang, Xin; Sun, Pengcheng; Huangshan, Lingzi et al. (2015) Improved method for synthesis of cysteine modified hyaluronic acid for in situ hydrogel formation. Chem Commun (Camb) 51:9662-5
Gourevitch, Dmitri; Kossenkov, Andrew V; Zhang, Yong et al. (2014) Inflammation and Its Correlates in Regenerative Wound Healing: An Alternate Perspective. Adv Wound Care (New Rochelle) 3:592-603
Heber-Katz, Ellen; Blankenhorn, Elizabeth P (2014) Inflammation, Healing, and Genes: A Preface. Adv Wound Care (New Rochelle) 3:561-562
Jung, Jangwook P; Sprangers, Anthony J; Byce, John R et al. (2013) ECM-incorporated hydrogels cross-linked via native chemical ligation to engineer stem cell microenvironments. Biomacromolecules 14:3102-11

Showing the most recent 10 out of 13 publications