The cycle of repeated composite-restoration replacements is a pernicious problem?each replacement risks pulpal injury, increased tooth weakness, and eventually, tooth loss. The problem is pervasive?nearly 70% of all composite restorations are replacements and the leading cause of failure is recurrent marginal decay. Unlike amalgam, composite lacks the inherent capability to seal discrepancies at the material/tooth interface. The adhesive that bonds the composite to the tooth is intended to seal the interface, but the adhesive seal to dentin is fragile?it is readily damaged by acids, enzymes, and other oral fluids. Bacteria and bacterial by-products infiltrate the resulting marginal gaps, demineralize and decompose the tooth, and further erode the adhesive, leading to wider and deeper gaps that create an ideal environment for bacteria to proliferate. Biodegradation by- products accumulate at the dentin/adhesive interface and increase the virulence of cariogenic bacteria, provoking a positive feedback loop that escalates the degradation. There is an urgent need to address this composite/tooth-interface vulnerability through multi-factorial approaches that: i) remineralize damaged dentin; ii) inhibit bacterial attack; and iii) provide durable polymers. Recent findings from our lab offer significant promise for meeting this need. First, we have synthesized novel self-strengthening polymers?the self-strengthening mechanism provides a persistent, intrinsic reinforcement of the polymer network in both neutral and acidic conditions. We have engineered antimicrobial and remineralizing peptides and tethered them to self- strengthening-adhesive monomers. Building on our progress, we propose to use both engineered peptides and antibacterial agents tethered to novel polymers to provide a ?bio-hybrid? adhesive that will serve as a durable barrier to recurrent decay. Our threefold strategy exploits: (i) polymer-tethered engineered peptides and antibacterial agents to simultaneously provide antibacterial activity, delay biofilm formation, and remineralize dentin; (ii) self-strengthening polymers that resist hydrolysis-mediated degradation; and (iii) iterative feedback between synthesis, characterization, and modeling to forecast performance under relevant in vivo conditions.

Public Health Relevance

The cycle of repeated composite-restoration replacements is a pernicious problem?each replacement risks pulpal injury, increased tooth weakness, and eventually, tooth loss. The problem is pervasive?nearly 70% of all composite restorations are replacements for failures. High-risk patients, such as the 4 million U.S. children and more than 100 million adults who do not receive regular dental care, are particularly vulnerable. The leading cause of failure is decay at the interface between the composite and tooth. This interface is initially sealed by an adhesive but the adhesive seal is weak and readily degraded. The proposed project will result in the following patient benefits: 1) substantial reduction in bacteria that infect the tooth margin; 2) ability to repair tooth structure damaged by bacteria, acids, and enzymes; 3) a self-strengthening adhesive that resists degradation; and 4) ~90% reduction in unreacted adhesive that could leach into the tissues of the mouth.

Agency
National Institute of Health (NIH)
Institute
National Institute of Dental & Craniofacial Research (NIDCR)
Type
Research Project (R01)
Project #
2R01DE025476-06A1
Application #
10066186
Study Section
Oral, Dental and Craniofacial Sciences Study Section (ODCS)
Program Officer
Lopez, Orlando
Project Start
2020-08-12
Project End
2025-07-31
Budget Start
2020-08-12
Budget End
2021-07-31
Support Year
6
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Kansas Lawrence
Department
Engineering (All Types)
Type
Biomed Engr/Col Engr/Engr Sta
DUNS #
076248616
City
Lawrence
State
KS
Country
United States
Zip Code
66045
Song, Linyong; Ye, Qiang; Ge, Xueping et al. (2018) Fabrication of hybrid crosslinked network with buffering capabilities and autonomous strengthening characteristics for dental adhesives. Acta Biomater 67:111-121
Parthasarathy, Ranganathan; Misra, Anil; Song, Linyong et al. (2018) Structure-property relationships for wet dentin adhesive polymers. Biointerphases 13:061004
Song, Linyong; Ge, Xueping; Ye, Qiang et al. (2018) Modulating pH through lysine integrated dental adhesives. Dent Mater :
Wu, Xiaowen; Mahalingam, Suntharavathanan; VanOosten, Sarah Kay et al. (2017) New Generation of Tunable Bioactive Shape Memory Mats Integrated with Genetically Engineered Proteins. Macromol Biosci 17:
Ye, Qiang; Spencer, Paulette; Yuca, Esra et al. (2017) Engineered Peptide Repairs Defective Adhesive-Dentin Interface. Macromol Mater Eng 302:
Song, Linyong; Ye, Qiang; Ge, Xueping et al. (2017) Probing the neutralization behavior of zwitterionic monomer-containing dental adhesive. Dent Mater 33:564-574
Yazici, Hilal; O'Neill, Mary B; Kacar, Turgay et al. (2016) Engineered Chimeric Peptides as Antimicrobial Surface Coating Agents toward Infection-Free Implants. ACS Appl Mater Interfaces 8:5070-81
Abedin, Farhana; Ye, Qiang; Song, Linyong et al. (2016) Effect of Partition of Photo-initiator Components and Addition of Iodonium Salt on the Photopolymerization of Phase-Separated Dental Adhesive. JOM (1989) 68:1090-1099
Song, Linyong; Ye, Qiang; Ge, Xueping et al. (2016) Mimicking nature: Self-strengthening properties in a dental adhesive. Acta Biomater 35:138-52
Wisdom, Cate; VanOosten, Sarah Kay; Boone, Kyle W et al. (2016) Controlling the Biomimetic Implant Interface: Modulating Antimicrobial Activity by Spacer Design. J Mol Eng Mater 4:

Showing the most recent 10 out of 14 publications