With the goal of devising innovative therapies to treat birth defects, diseases, and injuries that compromise the function of the temporomandibular joint (TMJ), much needs to be done to uncover mechanisms that direct the differentiation of secondary cartilage. Secondary cartilage arises after development of the primary cartilaginous skeleton and plays a critical kinetic role in the articulations and muscle attachments of the jaw. In humans, secondary cartilage that forms at the condylar and coronoid processes of the mandible is required for normal function of the TMJ. Jaw movements and associated forces are necessary to induce and maintain secondary cartilage, but how biomechanical and molecular signals become integrated to do so remains unclear. To address this question, we propose a series of experiments that leverage the distinct jaw anatomies of duck and quail embryos. Much like that found in humans, duck develop a pronounced secondary cartilage at the tendon insertion of their jaw adductor muscle on the coronoid process. An equivalent secondary cartilage is absent in quail and other species such as mice. We exploit the fact that duck form this secondary cartilage and focus on the role of neural crest mesenchyme (NCM), which produces all the cartilages and bones in the jaw skeleton. NCM also makes muscle connective tissues including ligaments and tendons. In contrast, jaw muscles are derived from mesoderm. Our published and preliminary studies show that NCM, when transplanted from quail to duck, generates quail-like pattern in the jaw skeleton and accompanying musculature, which in turn causes a loss of secondary cartilage on the coronoid process. Moreover, paralyzing muscle or blocking Transforming Growth Factor-Beta (TGF?) and Fibroblast Growth Factor (FGF) signaling also inhibits secondary chondrogenesis on the coronoid process. Thus, we hypothesize that species-specific differences in TGF? and FGF signaling, jaw architecture, and mechanical forces promote formation of secondary cartilage on the coronoid process of duck versus quail. We test our hypothesis with three Specific Aims.
In Aim 1, we evaluate the extent to which TGF? and FGF signaling are NCM-mediated, and use gain- and loss-of-function approaches to determine precisely when and where these pathways induce secondary cartilage at the coronoid process.
In Aim 2, we investigate the link between jaw architecture and mechanical forces at the mandibular adductor using a finite element model derived from geometric and material property studies, and tested through experimental manipulations.
In Aim 3, we block mechanotransduction, modulate embryonic motility, and combine in vivo and in vitro experiments to understand how the local mechanical environment regulates molecular programs for secondary cartilage. By investigating the effects of NCM-mediated signaling, musculoskeletal anatomy, and mechanical forces on the induction of secondary cartilage, this project will offer new insights on patterning the coronoid process, which is essential to TMJ function, provide a potential means to improve tendon to bone healing, and lead to novel clinical strategies for regenerating secondary cartilage.

Public Health Relevance

Muscles that close the jaw are important for normal temporomandibular joint (TMJ) function. In some species, including humans, proper insertion of these muscles requires a special type of cartilage to form in response to forces generated by jaw movement, but how this happens remains unclear. This project will elucidate biomechanical and molecular mechanisms that induce cartilage at the insertion of jaw muscles, which is crucial for developing novel regenerative therapies to restore TMJ function following birth defects, injury, or disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Dental & Craniofacial Research (NIDCR)
Type
Research Project (R01)
Project #
5R01DE025668-03
Application #
9525941
Study Section
Skeletal Biology Development and Disease Study Section (SBDD)
Program Officer
Wan, Jason
Project Start
2016-07-05
Project End
2021-06-30
Budget Start
2018-07-01
Budget End
2019-06-30
Support Year
3
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of California San Francisco
Department
Orthopedics
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94118
Hughes, Alex J; Miyazaki, Hikaru; Coyle, Maxwell C et al. (2018) Engineered Tissue Folding by Mechanical Compaction of the Mesenchyme. Dev Cell 44:165-178.e6
Schneider, Richard A (2018) Neural crest and the origin of species-specific pattern. Genesis 56:e23219
Woronowicz, Katherine C; Gline, Stephanie E; Herfat, Safa T et al. (2018) FGF and TGF? signaling link form and function during jaw development and evolution. Dev Biol :
Schneider, Richard A (2015) Regulation of Jaw Length During Development, Disease, and Evolution. Curr Top Dev Biol 115:271-98