We have previously shown that cells of the immune system can produce a host of neuroendocrine hormone-like peptides and also be acted upon by these same hormones. This has led to the concept that bidirectional communication between the immune and neuroendocrine systems occurs biochemically as a result of a shared set of hormones and their receptors. The ultimate proof of this theory seems to reside in a basic understanding of the primary structure of immunologically-derived hormones and their receptors as well as knowledge of their in vivo functions. This constitutes the overall objective of this research proposal, and this will be accomplished primarily through molecular biological techniques such as cDNA cloning, polymerase chain reactions and cDNA sequencing. Specifically, we intend to clone and sequence the cDNAs for leukocyte- derived pro-opiomelanocortin (POMC), thyrotropin (TSH), chorionic gonadotropin (CG), luteinizing hormone (LH) as well as the delta opiate and LH releasing hormone (RH) receptors. Comparison of these sequences with those of the neuroendocrine counterparts would constitute a definitive test of the aforementioned concept. The possible in vivo function as well as cellular source of immunologically-derived ACTH, TSH, and LH will be assessed in hypophysectomized mice. Specifically, we will determine whether such animals exhibit the appropriate hormonal response following corticotropin releasing factor (CRF), thyrotropin releasing hormone (TRH), and LHRH treatment, respectively. If so, we will attempt to ablate the response by immunodepletion techniques. Successful completion of these studies should yield pivotal information on a communication circuit between the immune and neuroendocrine systems. An understanding of this circuitry could lead to many new ideas for the detection, prophylaxis and therapy of human diseases.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Neurology C Study Section (NEUC)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Alabama Birmingham
Schools of Dentistry
United States
Zip Code
Weigent, Douglas A (2013) Expression of lymphocyte-derived growth hormone (GH) and GH-releasing hormone receptors in aging rats. Cell Immunol 282:71-8
Vines, C R; Weigent, D A (2000) Identification of SP3 as a negative regulatory transcription factor in the monocyte expression of growth hormone. Endocrinology 141:938-46
Weigent, D A; Vines, C R; Long, J C et al. (2000) Characterization of the promoter-directing expression of growth hormone in a monocyte cell line. Neuroimmunomodulation 7:126-34
Lyons, P D; Blalock, J E (1997) Pro-opiomelanocortin gene expression and protein processing in rat mononuclear leukocytes. J Neuroimmunol 78:47-56
Galin, F S; Maier, C C; Zhou, S R et al. (1996) Murine V lambda x and V lambda x-containing antibodies bind human myelin basic protein. J Clin Invest 97:486-92
Galin, F S; Zhou, S R; Whitaker, J N et al. (1996) Preferential association of V lambda x light chains with gamma 2a heavy chains in naturally occurring human myelin basic protein reactive antibodies. J Neuroimmunol 70:15-20
Lyons, P D; Blalock, J E (1995) The kinetics of ACTH expression in rat leukocyte subpopulations. J Neuroimmunol 63:103-12
Weigent, D A; Blalock, J E (1995) Associations between the neuroendocrine and immune systems. J Leukoc Biol 58:137-50
Payne, L C; Weigent, D A; Blalock, J E (1994) Induction of pituitary sensitivity to interleukin-1: a new function for corticotropin-releasing hormone. Biochem Biophys Res Commun 198:480-4
Maier, C C; Galin, F S; Jarpe, M A et al. (1994) A V lambda x-bearing monoclonal antibody with similar specificity and sequence to encephalitogenic T cell receptors. J Immunol 153:1132-40

Showing the most recent 10 out of 54 publications