The LONG-TERM OBJECTIVES of this research are two fold: 1) to define the role of fatty acids in the regulation of the stearoyl-CoA desaturase genes in mouse liver and adipose tissue. 2) to understand the molecular mechanisms that control the expression of the mouse stearoyl-CoA desaturase genes in differentiating preadipocytes and fully developed adipocytes. As an approach to the first problem, I plan to continue my studies to the mechanisms that regulate the expression of the stearoyl-CoA desaturase genes in the liver and adipose tissue of mice that have been fed fat-free diets and diets containing either saturated or unsaturated fatty acids. To address the second problem, I plan to extend my initial studies on the regulatory mechanisms that occur during the differentiation of mouse 3T3-L1 preadipocytes into adipocytes in culture. The differentiation of 3T3-L1 preadipocytes into adipocytes in one of the few well characterized model systems available to study cellular differentiation at the molecular level. Stearoyl-CoA desaturase is a key enzyme in the biosynthesis of unsaturated fatty acids as well as the regulation of this process. I have cloned and determined the genetic organization of the two stearoyl-CoA desaturase gene (SCD1 and SCD2) both of which are transcriptionally activated during preadipocyte differentiation but are regulated differently by fatty acids in mouse liver, adipose and other tissues. The major aim of this proposal is to establish precisely how fatty acids control gene expression. Conventional molecular biology approaches will be used to help in answering the hypotheses.
The SPECIFIC AIMS of the proposed research will be: 1) to identify and sequence the regulatory elements which control transcription of the two stearoyl-CoA desaturase gene during preadipocyte differentiation. 2) to identify the unique regulatory proteins which interact with the control elements of the genes, characterize them and determine their function. 3) to determine the site(s) at which fatty acids act to regulate the differential induction of the mouse liver and adipose stearoyl-CoA desaturase mRNAs, i.e. whether by affecting gene transcription or by changing the rate of specific mRNA turnover. The next objective will be to study the molecular mechanisms of this type of regulation. These studies may clarify molecular mechanisms of cellular differentiation and the new insight gained into the role of fatty acids in the regulation of gene activity in mammals may be useful in the treatment of heart disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK042825-02
Application #
3243991
Study Section
Physiological Chemistry Study Section (PC)
Project Start
1990-09-01
Project End
1992-08-31
Budget Start
1991-09-01
Budget End
1992-08-31
Support Year
2
Fiscal Year
1991
Total Cost
Indirect Cost
Name
Georgetown University
Department
Type
Schools of Dentistry
DUNS #
049515844
City
Washington
State
DC
Country
United States
Zip Code
20057
Singh, M V; Ntambi, J M (1998) Nuclear factor 1 is essential for the expression of stearoyl-CoA desaturase 1 gene during preadipocyte differentiation. Biochim Biophys Acta 1398:148-56
Sessler, A M; Ntambi, J M (1998) Polyunsaturated fatty acid regulation of gene expression. J Nutr 128:923-6
Waters, K M; Miller, C W; Ntambi, J M (1997) Localization of a negative thyroid hormone-response region in hepatic stearoyl-CoA desaturase gene 1. Biochem Biophys Res Commun 233:838-43
Miller, C W; Waters, K M; Ntambi, J M (1997) Regulation of hepatic stearoyl-CoA desaturase gene 1 by vitamin A. Biochem Biophys Res Commun 231:206-10
Waters, K M; Miller, C W; Ntambi, J M (1997) Localization of a polyunsaturated fatty acid response region in stearoyl-CoA desaturase gene 1. Biochim Biophys Acta 1349:33-42
Ntambi, J M; Sessler, A M; Takova, T (1996) A model cell line to study regulation of stearoyl-CoA desaturase gene 1 expression by insulin and polyunsaturated fatty acids. Biochem Biophys Res Commun 220:990-5
Sessler, A M; Kaur, N; Palta, J P et al. (1996) Regulation of stearoyl-CoA desaturase 1 mRNA stability by polyunsaturated fatty acids in 3T3-L1 adipocytes. J Biol Chem 271:29854-8
Ntambi, J M; Takova, T (1996) Role of Ca2+ in the early stages of murine adipocyte differentiation as evidenced by calcium mobilizing agents. Differentiation 60:151-8
Miller, C W; Casimir, D A; Ntambi, J M (1996) The mechanism of inhibition of 3T3-L1 preadipocyte differentiation by prostaglandin F2alpha. Endocrinology 137:5641-50
Waters, K M; Ntambi, J M (1996) Polyunsaturated fatty acids inhibit hepatic stearoyl-CoA desaturase-1 gene in diabetic mice. Lipids 31 Suppl:S33-6

Showing the most recent 10 out of 17 publications