Acute renal ischemia is a common clinical occurrence associated with considerable morbidity and mortality. The clinical diagnosis known as acute tubular necrosis (ATN) is associated with decreased urine output and a progressive increase in the serum creatinine. During the recovery from ATN, polyuria defined as a urine output greater than 2 liters per day is observed for three to five days. Pathological features of ATN have been associated with alterations in the actin cytoskeleton and a loss of membrane polarity. The polyuric phase of ATN has been suggested to be causally related to the apical location of functional Na,K-ATPase. Once the normal membrane distribution of Na,K-ATPase is re-established the polyuric phase of ATN resolves. However the prolonged polyuric phase of ATN cannot be reconciled with the best available data estimating rates of membrane turnover in renal epithelial cells. This suggests that newly synthesized Na,K-ATPase may be mis-sorted or targeted to the wrong plasma membrane domain in renal epithelial cells recovering from ischemic injury. The experiments outlined in this proposal, are designed to test the hypothesis that ischemic injury or ATP depletion, disrupts the sorting and targeting machinery of epithelial cells. Specifically, ischemic injury causes a kinetic delay in transport vesicle formation that permits sorted proteins to escape from their specific transport complex. This would lead to significant mis-sorting of proteins during recovery from injury. This hypothesis will be tested by examining the protein sorting characteristics of a variety of apical and basolateral membrane proteins and glycolipids during the recovery from ATP depletion. The sorting and transport of proteins will be examined in vivo using low level light microscopy, fluorescent tagged proteins, image processing and biochemical isolation techniques.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK046883-08
Application #
6380815
Study Section
General Medicine B Study Section (GMB)
Program Officer
Star, Robert A
Project Start
1994-05-01
Project End
2003-06-30
Budget Start
2001-07-01
Budget End
2002-06-30
Support Year
8
Fiscal Year
2001
Total Cost
$67,043
Indirect Cost
Name
Indiana University-Purdue University at Indianapolis
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
005436803
City
Indianapolis
State
IN
Country
United States
Zip Code
46202
Blazer-Yost, Bonnie L; Vahle, Judith C; Byars, Jason M et al. (2004) Real-time three-dimensional imaging of lipid signal transduction: apical membrane insertion of epithelial Na(+) channels. Am J Physiol Cell Physiol 287:C1569-76
Bacallao, Robert L; Yu, Weiming; Dunn, Kenneth W et al. (2003) Novel light microscopy imaging techniques in nephrology. Curr Opin Nephrol Hypertens 12:455-61
Kher, R; Bacallao, R (2001) Direct in situ reverse transcriptase-polymerase chain reaction. Am J Physiol Cell Physiol 281:C726-32