Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK047043-03
Application #
2146361
Study Section
Immunological Sciences Study Section (IMS)
Project Start
1994-04-01
Project End
1998-03-31
Budget Start
1996-04-01
Budget End
1997-03-31
Support Year
3
Fiscal Year
1996
Total Cost
Indirect Cost
Name
University of California San Francisco
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
073133571
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Nunez, Jacques; Celi, Francesco S; Ng, Lily et al. (2008) Multigenic control of thyroid hormone functions in the nervous system. Mol Cell Endocrinol 287:1-12
Hayakawa, N; Premawardhana, L D K E; Powell, M et al. (2002) Isolation and characterization of human monoclonal autoantibodies to glutamic acid decarboxylase. Autoimmunity 35:343-55
Wolfe, Tom; Bot, Adrian; Hughes, Anna et al. (2002) Endogenous expression levels of autoantigens influence success or failure of DNA immunizations to prevent type 1 diabetes: addition of IL-4 increases safety. Eur J Immunol 32:113-21
O'Rourke, R W; Kang, S M; Lower, J A et al. (2000) A dendritic cell line genetically modified to express CTLA4-IG as a means to prolong islet allograft survival. Transplantation 69:1440-6
Shi, Y; Kanaani, J; Menard-Rose, V et al. (2000) Increased expression of GAD65 and GABA in pancreatic beta-cells impairs first-phase insulin secretion. Am J Physiol Endocrinol Metab 279:E684-94
Roll, U; Turck, C W; Gitelman, S E et al. (2000) Peptide mapping and characterisation of glycation patterns of the glima 38 antigen recognised by autoantibodies in Type I diabetic patients. Diabetologia 43:598-608
Schwartz, H L; Chandonia, J M; Kash, S F et al. (1999) High-resolution autoreactive epitope mapping and structural modeling of the 65 kDa form of human glutamic acid decarboxylase. J Mol Biol 287:983-99
Kanaani, J; Lissin, D; Kash, S F et al. (1999) The hydrophilic isoform of glutamate decarboxylase, GAD67, is targeted to membranes and nerve terminals independent of dimerization with the hydrophobic membrane-anchored isoform, GAD65. J Biol Chem 274:37200-9
Kang, S M; Schneider, D B; Lin, Z et al. (1997) Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction. Nat Med 3:738-43