Maintenance of extracellular fluid volume homeostasis is essential for hemodynamic stability, and abnormalities of renal sodium handling have been linked to cardiovascular disease and hypertension. Ultimate regulation of sodium excretion in the kidney occurs in the distal nephron via conductive transport through the amiloride sensitive epithelial Na+ channel (ENaC). ENaC expression and activity in the apical membrane of epithelial cells is the rate limiting step in Na+ reabsorption not only in kidney collecting duct, but in airway epithelia and colon as well. Abnormalities of ENaC function have been demonstrated in hereditary forms of hypertension, renal salt wasting, and cystic fibrosis. The long term goal of this research is to understand the factors that regulate ENaC expression in the apical membrane of epithelial cells and the mechanisms by which hormones, physiologic conditions and other channels (such as the cystic fibrosis transmembrane regulator, CFTR) control ENaC function. Experiments will define the synthesis, apical expression, endocytosis, recycling and degradation of ENaC subunits in well polarized kidney cells. We will then examine a novel paradigm to explain the non-coordinate regulation of ENaC subunits under basal and hormonally-stimulated conditions that we and other investigators have observed.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
1R01DK057718-01A2
Application #
6431083
Study Section
General Medicine B Study Section (GMB)
Program Officer
Ketchum, Christian J
Project Start
2002-02-01
Project End
2006-01-31
Budget Start
2002-02-01
Budget End
2003-01-31
Support Year
1
Fiscal Year
2002
Total Cost
$245,522
Indirect Cost
Name
University of Pittsburgh
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
053785812
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Butterworth, Michael B; Edinger, Robert S; Silvis, Mark R et al. (2012) Rab11b regulates the trafficking and recycling of the epithelial sodium channel (ENaC). Am J Physiol Renal Physiol 302:F581-90
Butterworth, Michael B (2010) Regulation of the epithelial sodium channel (ENaC) by membrane trafficking. Biochim Biophys Acta 1802:1166-77
Hallows, Kenneth R; Wang, Huamin; Edinger, Robert S et al. (2009) Regulation of epithelial Na+ transport by soluble adenylyl cyclase in kidney collecting duct cells. J Biol Chem 284:5774-83
Edinger, Robert S; Lebowitz, Jonathan; Li, Hui et al. (2009) Functional regulation of the epithelial Na+ channel by IkappaB kinase-beta occurs via phosphorylation of the ubiquitin ligase Nedd4-2. J Biol Chem 284:150-7
Butterworth, Michael B; Edinger, Robert S; Frizzell, Raymond A et al. (2009) Regulation of the epithelial sodium channel by membrane trafficking. Am J Physiol Renal Physiol 296:F10-24
Butterworth, Michael B; Weisz, Ora A; Johnson, John P (2008) Some assembly required: putting the epithelial sodium channel together. J Biol Chem 283:35305-9
Weixel, Kelly M; Edinger, Robert S; Kester, Lauren et al. (2007) Phosphatidylinositol 4-phosphate 5-kinase reduces cell surface expression of the epithelial sodium channel (ENaC) in cultured collecting duct cells. J Biol Chem 282:36534-42
Butterworth, Michael B; Edinger, Robert S; Ovaa, Huib et al. (2007) The deubiquitinating enzyme UCH-L3 regulates the apical membrane recycling of the epithelial sodium channel. J Biol Chem 282:37885-93
Hill, Warren G; Butterworth, Michael B; Wang, Huamin et al. (2007) The epithelial sodium channel (ENaC) traffics to apical membrane in lipid rafts in mouse cortical collecting duct cells. J Biol Chem 282:37402-11
Edinger, Robert S; Yospin, Jeremy; Perry, Clint et al. (2006) Regulation of epithelial Na+ channels (ENaC) by methylation: a novel methyltransferase stimulates ENaC activity. J Biol Chem 281:9110-7

Showing the most recent 10 out of 17 publications