Injury and inflammation trigger the generation of proteases from the circulation, inflammatory cells and epithelial tissues that cleave protease-activated receptors (PARs) to control hemostasis, inflammation, pain and repair. This proposal tests the hypothesis that proteases generated during inflammation cleave PAR2 on sensory nerves. PAR2 activates signaling mechanisms that sensitize ion channels, resulting in release of neuropeptides, which cause neurogenic inflammation and hyperalgesia to inflammatory, thermal, mechanical and osmotic stimuli. These mechanisms will be studied in the intestine, the richest source of proteases in health and diseases states, where neuronal sensitization causes inflammation, pain and functional disturbances by poorly understood mechanisms. They also will be studied in the skin, where proteases induce neurogenic inflammation and pain by well-defined mechanisms due to sensitization of specific ion channels. Studies of transfected cell lines, isolated neurons and genetically-modified mice are proposed.
Aim 1 uses PAR2 deficient mice and protease inhibitors to determine the contribution of PAR2 and endogenous proteases to inflammation and pain. The role of protein kinase C epsilon and D in PAR2-induced sensitization of transient receptor potential vanilloid receptor 1 (TRPV1), a major mediator of inflammatory and thermal pain, will be determined using isolated cells and intact animals.
Aim 2 defines the signaling pathway by which PAR2 sensitizes TRPV4, and uses TRPV4-deficient mice to determine the role of this channel in inflammation and pain to mechanical and osmotic stimuli.
Aim 3 investigates mechanism by which trafficking of PAR2 and TRPV1 to and from the plasma membrane controls neuronal responsiveness. The role of arrestin and ubiquitin in endocytosis and lysosomal trafficking of PAR2, and the role of rabl 1a in mobilization of Golgi PAR2 will be studied in nociceptive neurons. The mechanism by which sensitizing agents, such as PAR2, promote TRPV1 exocytosis, and by which desensitizing agents, such as capsaicin, promote TRPV1 endocytosis and degradation will be examined. An understanding of how proteases regulate neurons will provide new insights into the general mechanisms by which inflammation shapes neuronal plasticity to cause dysfunction and disease, and may lead to new therapies to control neuronal hypersensitivity, inflammation, pain and functional disturbances of the gastrointestinal tract. ? ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK057840-07
Application #
7266935
Study Section
Special Emphasis Panel (ZRG1-DIG-C (05))
Program Officer
May, Michael K
Project Start
2000-07-01
Project End
2011-04-30
Budget Start
2007-05-01
Budget End
2008-04-30
Support Year
7
Fiscal Year
2007
Total Cost
$209,234
Indirect Cost
Name
University of California San Francisco
Department
Surgery
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Fichna, J; Poole, D P; Veldhuis, N et al. (2015) Transient receptor potential vanilloid 4 inhibits mouse colonic motility by activating NO-dependent enteric neurotransmission. J Mol Med (Berl) 93:1297-309
Pelayo, Juan-Carlos; Veldhuis, Nicholas A; Eriksson, Emily M et al. (2014) Localisation and activation of the neurokinin 1 receptor in the enteric nervous system of the mouse distal colon. Cell Tissue Res 356:319-32
Haerteis, Silke; Krappitz, Annabel; Krappitz, Matteus et al. (2014) Proteolytic activation of the human epithelial sodium channel by trypsin IV and trypsin I involves distinct cleavage sites. J Biol Chem 289:19067-78
Alemi, Farzad; Kwon, Edwin; Poole, Daniel P et al. (2013) The TGR5 receptor mediates bile acid-induced itch and analgesia. J Clin Invest 123:1513-30
Alemi, Farzad; Poole, Daniel P; Chiu, Jonathan et al. (2013) The receptor TGR5 mediates the prokinetic actions of intestinal bile acids and is required for normal defecation in mice. Gastroenterology 144:145-54
Poole, Daniel P; Amadesi, Silvia; Veldhuis, Nicholas A et al. (2013) Protease-activated receptor 2 (PAR2) protein and transient receptor potential vanilloid 4 (TRPV4) protein coupling is required for sustained inflammatory signaling. J Biol Chem 288:5790-802
Veldhuis, Nicholas A; Lew, Michael J; Abogadie, Fe C et al. (2012) N-glycosylation determines ionic permeability and desensitization of the TRPV1 capsaicin receptor. J Biol Chem 287:21765-72
Haerteis, Silke; Krappitz, Matteus; Bertog, Marko et al. (2012) Proteolytic activation of the epithelial sodium channel (ENaC) by the cysteine protease cathepsin-S. Pflugers Arch 464:353-65
Hasdemir, Burcu; Mahajan, Shilpi; Bunnett, Nigel W et al. (2012) Endothelin-converting enzyme-1 actions determine differential trafficking and signaling of corticotropin-releasing factor receptor 1 at high agonist concentrations. Mol Endocrinol 26:681-95
Lyo, Victoria; Cattaruzza, Fiore; Kim, Tyson N et al. (2012) Active cathepsins B, L, and S in murine and human pancreatitis. Am J Physiol Gastrointest Liver Physiol 303:G894-903

Showing the most recent 10 out of 48 publications