Peripheral neuropathy in patients with diabetes mellitus is closely associated with development of cutaneous non-healing ulcers. Twenty to thirty thousand amputations performed annually in the United States on diabetic patients with chronic non-healing ulcers significantly impact medical costs, impairment and quality of life. Determining cellular events leading to diabetic neuropathy and impaired wound healing provides an opportunity for therapeutic intervention. We hypothesize that in patients with diabetes mellitus, microvascular endothelial cells and keratinocytes 1) do not produce necessary neurotrophic factors for sensory nerve fiber growth and 2) do not respond normally to nerve derived inflammatory mediators and these abnormalities contribute to impaired wound healing. We anticipate that hyperglycemia prevents normal signaling between cutaneous cells and sensory nerve fibers. This may result from decreased substance P due to the reduced innervation. Glycosylation of substance P, cell surface receptors or matrix molecules due to prolonged hyperglycemia may inhibit normal neuroinflammation. Alternatively, proteolytic degradation of substance P by increased levels of the enzyme neutral endopeptidase may reduce neuroinflammation. We will test our hypothesis by addressing the following:
Specific Aim 1 : To determine whether hyperglycemia blunts the response of cutaneous cells to substance P. We will compare substance P- induced NGF production by microvascular endothelial cells and keratinocytes under normal and hyperglycemic conditions. We will evaluate the effect of hyperglycemia on substance P-induced changes in endothelial cell integrin expression and cytoskeleton organization.
Specific Aim 2 : To determine whether matrix molecule glycosylation interferes with response of cutaneous cells to substance P. We will determine whether matrix molecule glycation decrease substance P-induced NGF synthesis or changes in endothelial cell cytoskeletal organization and/or integrin expression.
Specific Aim 3 : To determine the effect of hyperglycemia and matrix molecule glycosylation on neutral endopeptidase expression and activity by cutaneous cells. We will determine whether hyperglycemia or matrix molecule glycation increases neutral endopeptidase activity by cutaneous cells. We will determine whether hyperglycemia or matrix molecule glycation increases neutral endopeptidase expression and activity by microvascular endothelial cells or keratinocytes. Specific im 4: To determine whether restoration of neuropeptides or neurotrophins improves wound repair in diabetic (db/db) mice. Using an excisional would model in hyperglycemia db/db mice, we will replace substance P, replace NGF or inhibit neutral endopeptidase activity to evaluate the roles of neuropeptides and NGF in wound repair.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
1R01DK058007-01
Application #
6076353
Study Section
Special Emphasis Panel (ZNS1-SRB-W (02))
Program Officer
Jones, Teresa L Z
Project Start
1999-09-30
Project End
2003-08-31
Budget Start
1999-09-30
Budget End
2000-08-31
Support Year
1
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of Washington
Department
Surgery
Type
Schools of Medicine
DUNS #
135646524
City
Seattle
State
WA
Country
United States
Zip Code
98195
Wang, Qiang; Muffley, Lara A; Hall, Kyla et al. (2009) Elevated glucose and fatty acid levels impair substance P-induced dermal microvascular endothelial cell migration and proliferation in an agarose gel model system. Shock 32:491-7
Muangman, Pornprom; Tamura, Richard N; Muffley, Lara A et al. (2009) Substance P enhances wound closure in nitric oxide synthase knockout mice. J Surg Res 153:201-9
Scott, Jeffrey R; Tamura, Richard N; Muangman, Pornprom et al. (2008) Topical substance P increases inflammatory cell density in genetically diabetic murine wounds. Wound Repair Regen 16:529-33
Sullivan, Stephen R; Underwood, Robert A; Sigle, Randall O et al. (2007) Topical application of laminin-332 to diabetic mouse wounds. J Dermatol Sci 48:177-88
Muangman, Pornprom; Tamura, Richard N; Gibran, Nicole S (2005) Antioxidants inhibit fatty acid and glucose-mediated induction of neutral endopeptidase gene expression in human microvascular endothelial cells. J Am Coll Surg 200:208-15
Sullivan, Stephen R; Underwood, Robert A; Gibran, Nicole S et al. (2004) Validation of a model for the study of multiple wounds in the diabetic mouse (db/db). Plast Reconstr Surg 113:953-60
Muangman, Pornprom; Muffley, Lara A; Anthony, Joanne P et al. (2004) Nerve growth factor accelerates wound healing in diabetic mice. Wound Repair Regen 12:44-52
Muangman, Pornprom; Spenny, Michelle L; Tamura, Richard N et al. (2003) Fatty acids and glucose increase neutral endopeptidase activity in human microvascular endothelial cells. Shock 19:508-12
Gibran, Nicole S; Tamura, Richard; Tsou, Ray et al. (2003) Human dermal microvascular endothelial cells produce nerve growth factor: implications for wound repair. Shock 19:127-30
Spenny, Michelle L; Muangman, Pornprom; Sullivan, Stephen R et al. (2002) Neutral endopeptidase inhibition in diabetic wound repair. Wound Repair Regen 10:295-301