The identification of somatic stem cell populations in mammalian tissues has raised important questions about the specification, maintenance and control of differentiation of these cells during an organism's lifespan. The experiments in this application utilize a unique in vitromodel to study the interplay of genetics and microenvironment in the regulation of plasticity and commitment of tissue derived over stem cells.
In specific aim 1, we use a genome based approach to determine which pathways of gene regulation are specific to hepatocytic or bile ductular differentiation of hepatic progenitor cells and which are common to both lineages.
In specific aim 2, we will determine if the Wnt signaling pathway, through the action of beta-catenin, plays a role in the maintenance of the stem cell phenotype in embryonic hepatic stem cells.
In specific aim 3, candidate stem cell genes derived from our microarray analysis will be evaluated for their usefulness as hepatic stem cell markers.
In specific aim 4, we will use the culture conditions we have established .for clonal growth of hepatoblasts from the murine hepatic diverticulum, to carry out clonal analysis of the developmental potential of retrovirally marked hepatic precursors from wild type and gene knock out mice, both in vitro andin vivo. An understanding of the molecular mechanisms controlling the differentiation potential of hepatic stem cells may greatly increase our ability to utilize such cells in experimental therapies for the treatment of chronic liver disease

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK061153-04
Application #
6789873
Study Section
Special Emphasis Panel (ZDK1-GRB-4 (O1))
Program Officer
Serrano, Jose
Project Start
2001-09-30
Project End
2006-06-30
Budget Start
2004-07-01
Budget End
2005-06-30
Support Year
4
Fiscal Year
2004
Total Cost
$375,080
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
110521739
City
Bronx
State
NY
Country
United States
Zip Code
10461
Zhao, H; Lu, Z; Bauzon, F et al. (2017) p27T187A knockin identifies Skp2/Cks1 pocket inhibitors for advanced prostate cancer. Oncogene 36:60-70
Zhao, Hongling; Wang, Hongbo; Bauzon, Frederick et al. (2016) Deletions of Retinoblastoma 1 (Rb1) and Its Repressing Target S Phase Kinase-associated protein 2 (Skp2) Are Synthetic Lethal in Mouse Embryogenesis. J Biol Chem 291:10201-9
Zhao, Hongling; Bauzon, Frederick; Bi, Enguang et al. (2015) Substituting threonine 187 with alanine in p27Kip1 prevents pituitary tumorigenesis by two-hit loss of Rb1 and enhances humoral immunity in old age. J Biol Chem 290:5797-809
Lu, Zhonglei; Bauzon, Frederick; Fu, Hao et al. (2014) Skp2 suppresses apoptosis in Rb1-deficient tumours by limiting E2F1 activity. Nat Commun 5:3463
Zhao, Hongling; Bauzon, Frederick; Fu, Hao et al. (2013) Skp2 deletion unmasks a p27 safeguard that blocks tumorigenesis in the absence of pRb and p53 tumor suppressors. Cancer Cell 24:645-59
Lu, Zhonglei; Marcelin, Genevieve; Bauzon, Frederick et al. (2013) pRb is an obesity suppressor in hypothalamus and high-fat diet inhibits pRb in this location. EMBO J 32:844-57
Rogler, Charles E; Levoci, Lauretta; Ader, Tammy et al. (2009) MicroRNA-23b cluster microRNAs regulate transforming growth factor-beta/bone morphogenetic protein signaling and liver stem cell differentiation by targeting Smads. Hepatology 50:575-84
Connolly, Erin; Melegari, Margherita; Landgraf, Pablo et al. (2008) Elevated expression of the miR-17-92 polycistron and miR-21 in hepadnavirus-associated hepatocellular carcinoma contributes to the malignant phenotype. Am J Pathol 173:856-64
Rogler, Charles E; Zhou, Hong Chou; LeVoci, Lauretta et al. (2007) Clonal, cultured, murine fetal liver hepatoblasts maintain liver specification in chimeric mice. Hepatology 46:1971-8
Nierhoff, Dirk; Levoci, Lauretta; Schulte, Sigrid et al. (2007) New cell surface markers for murine fetal hepatic stem cells identified through high density complementary DNA microarrays. Hepatology 46:535-47

Showing the most recent 10 out of 12 publications