Renal hypodysplasia (RHD) is a congenital disease that results in abnormally small and dysplastic kidneys. RHD is associated with chronic renal failure since the excretory portion does not differentiate properly and renal tubules progressively distend due to decreased filtration efficiency. Genes directing dysmorphogenetic events in RHD remain obscure. This project utilizes a radiation induced mutation in the 3H1 mouse called Brachyrrhine (Br) that inherits RHD as an autosomal semidominant trait. The overall goal of this project is to determine the genetic basis of RHD using Br as a model. Previously, Br was mapped to the distal portion of murine chromosome 17 (chr17). The first specific aim of this project is to undertake a high resolutioin microsatellite linkage analysis of distal chrl 7 to isolate a 100 - 500 kilobase region utilizing a large back cross mouse DNA sample followed by an in silico analysis of the candidate gene region using Celera and Sanger Gene Discovery databases.
The second aim i s to screen renal tissues of mutant and normal embyos at gestational days 13 and 14 for candidate gene expression using Northern blot analysis. It is expected that a gene deletion will be identified since the mutant phenotype and inheritance pattern is consistent with a radiation induced doubled stranded break and segment deletion. If a deletion is indicated, renal mRNA expression patterns in the mutant will be compared to corresponding normal renal tissue using RT-PCR and in situ hybridization, while associated protein analysis will utilize immunohistochemical methods.
Specific aim 3 will sequence each exon in the candidate region using 3H1+/'+ and Br/Br DNA samples. Thus, the mutation in 3H1 Br will be determined even if a deletion is not found in Specific Aim 2. Additional methods will be utilized including SSCP and heteroduplex analysis to identify mutations in exons that may have been missed. As a result of this project, the gene responsible for RHD in 3H1 Br/Br mice will be identified. This sequence will be subjected to a mouse-human homology search and it is likely that a corresponding human gene will be identified since distal murine chr17 shares a high degree of sequence affinity with human chr 2p21.1.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
General Medicine B Study Section (GMB)
Program Officer
Rasooly, Rebekah S
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Hawaii
Anatomy/Cell Biology
Schools of Medicine
United States
Zip Code
Fong, Keith S K; Hufnagel, Robert B; Khadka, Vedbar S et al. (2016) A mutation in the tuft mouse disrupts TET1 activity and alters the expression of genes that are crucial for neural tube closure. Dis Model Mech 9:585-96
Fong, Keith S K; Adachi, Dana A T; Chang, Shaun B et al. (2014) Midline craniofacial malformations with a lipomatous cephalocele are associated with insufficient closure of the neural tube in the tuft mouse. Birth Defects Res A Clin Mol Teratol 100:598-607
Fong, Keith S K; Cooper, Tiffiny Baring; Drumhiller, Wallace C et al. (2012) Craniofacial features resembling frontonasal dysplasia with a tubulonodular interhemispheric lipoma in the adult 3H1 tuft mouse. Birth Defects Res A Clin Mol Teratol 94:102-13
Somponpun, S Jack; Wong, Brittany; Hynd, Thomas E et al. (2011) Osmoregulatory defect in adult mice associated with deficient prenatal expression of six2. Am J Physiol Regul Integr Comp Physiol 301:R682-9
Wong, Brittany; Farrell, Michael L; Yang, Shiming et al. (2010) Tessellation analysis of glomerular spatial arrangement in mice with heritable renal hypoplasia. Anat Rec (Hoboken) 293:280-90
Fogelgren, Ben; Kuroyama, Mari C; McBratney-Owen, Brandeis et al. (2008) Misexpression of Six2 is associated with heritable frontonasal dysplasia and renal hypoplasia in 3H1 Br mice. Dev Dyn 237:1767-79
Willmore, Katherine Elizabeth; Zelditch, Miriam Leah; Young, Nathan et al. (2006) Canalization and developmental stability in the Brachyrrhine mouse. J Anat 208:361-72