Obesity is one of the most urgent health problems, and all strategies for its prevention or treatment have failed. Increased sedentary behavior represents one reason for the increasing prevalence of obesity and its devastating consequences. Low physical activity levels are also a major determinant of body fat gain during overfeeding. We have recently generated preliminary data indicating that within the established regulatory system controlling food intake and body weight, the novel hormone ghrelin, as well at its main mediating target molecule in the brain AGRP, effectively suppress spontaneous physical activity (SPA) in rodent models. The putative regulation of spontaneous physical activity (SPA) by several other players in the same hormonal and neuronal networks, all of which are known to regulate food intake, has not previously been investigated in a systematic manner. We therefore propose to investigate a possible role for endogenous ghrelin and its immediate hypothalamic targets in the regulation of SPA. This series of studies might add a new and important element to the current model of energy balance regulation. Expanding the current model of food intake control to include a detailed characterization of the hormonal mechanisms regulating physical activity will promote our understanding of one of the major factors causing obesity. Equally important will be to develop a novel functional blueprint of a defined interactive network of pathways in the brain, which simultaneously regulates food intake, thermogenesis and SPA. This strategy may help to develop efficacious pharmacological agents to prevent and treat obesity in the future.
Showing the most recent 10 out of 16 publications