To achieve normal growth, development, and quality of life, individuals must maintain adequate intake of nutrition and be free from prolonged metabolic derangement. Unfortunately, people affected with either acute or chronic diseases often show disorders of nutrient balance. In some cases, a devastating state of malnutrition known as cachexia arises, brought about by a synergistic combination of a dramatic decrease in appetite and an increase in metabolism of fat and lean body mass. This combination is found in a number of disorders including cancer, cystic fibrosis, AIDS, rheumatoid arthritis, and renal failure, and is an important determinant of morbidity and mortality in these conditions. Experimental models have demonstrated the importance of cytokines in mediating illness-induced anorexia and cachexia but the neuronal systems involved in transducing this signal have not been fully defined. Work in this lab and in others has demonstrated that hypothalamic melanocortin receptors play a critical role in regulating feeding behavior, linear growth, metabolic rate, and insulin sensitivity. Stimulation of the hypothalamic melanocortin-4 receptor (MC4-R) produces relative anorexia, while prolonged antagonism of this receptor stimulates feeding and results in excessive weight gain and growth. More recently, we have been able to demonstrate that in both acute and chronic disease models, blockade of the MC4-R results in a dramatic attenuation of cachexia. We have also demonstrated that blockade of the melanocortin-3 receptor (MC3-R) leads to enhanced disease-associated cachexia whereas stimulation of the MC3-R leads to increased food intake. Current research goals fall into two general areas as described in this grant. First, we will examine the contribution and unique function the MC3-R in acute and chronic cachexia. Second, the mechanisms by which circulating cytokines and tumor-derived factors activate the hypothalamic melanocortin system will be defined. Additionally, the process of habituation to cytokine-mediated anorexia will be investigated in the context of central melanocortin function. Ultimately, this work may lead to investigation of drug therapy for this widespread medical problem.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK070333-02
Application #
6900231
Study Section
Special Emphasis Panel (ZDK1-GRB-4 (J1))
Program Officer
Sato, Sheryl M
Project Start
2004-06-01
Project End
2009-05-31
Budget Start
2005-06-01
Budget End
2006-05-31
Support Year
2
Fiscal Year
2005
Total Cost
$246,597
Indirect Cost
Name
Oregon Health and Science University
Department
Pediatrics
Type
Schools of Medicine
DUNS #
096997515
City
Portland
State
OR
Country
United States
Zip Code
97239
Kamimae-Lanning, Ashley N; Krasnow, Stephanie M; Goloviznina, Natalya A et al. (2015) Maternal high-fat diet and obesity compromise fetal hematopoiesis. Mol Metab 4:25-38
Connelly, Kara J; Larson, Emily A; Marks, Daniel L et al. (2015) Neonatal estrogen exposure results in biphasic age-dependent effects on the skeletal development of male mice. Endocrinology 156:193-202
O'Rourke, Robert W; Meyer, Kevin A; Neeley, Christopher K et al. (2014) Systemic NK cell ablation attenuates intra-abdominal adipose tissue macrophage infiltration in murine obesity. Obesity (Silver Spring) 22:2109-14
Weymann, K B; Wood, L J; Zhu, X et al. (2014) A role for orexin in cytotoxic chemotherapy-induced fatigue. Brain Behav Immun 37:84-94
Braun, Theodore P; Szumowski, Marek; Levasseur, Peter R et al. (2014) Muscle atrophy in response to cytotoxic chemotherapy is dependent on intact glucocorticoid signaling in skeletal muscle. PLoS One 9:e106489
Zuloaga, Kristen L; Krasnow, Stephanie M; Zhu, Xinxia et al. (2014) Mechanism of protection by soluble epoxide hydrolase inhibition in type 2 diabetic stroke. PLoS One 9:e97529
O'Rourke, Robert W; Meyer, Kevin A; Gaston, Garen et al. (2013) Hexosamine biosynthesis is a possible mechanism underlying hypoxia's effects on lipid metabolism in human adipocytes. PLoS One 8:e71165
Braun, Theodore P; Grossberg, Aaron J; Krasnow, Stephanie M et al. (2013) Cancer- and endotoxin-induced cachexia require intact glucocorticoid signaling in skeletal muscle. FASEB J 27:3572-82
O'Rourke, Robert W; Gaston, Garen D; Meyer, Kevin A et al. (2013) Adipose tissue NK cells manifest an activated phenotype in human obesity. Metabolism 62:1557-61
Jouihan, Sari A; Zuloaga, Kristen L; Zhang, Wenri et al. (2013) Role of soluble epoxide hydrolase in exacerbation of stroke by streptozotocin-induced type 1 diabetes mellitus. J Cereb Blood Flow Metab 33:1650-6

Showing the most recent 10 out of 30 publications