Type 2 diabetes continues an unrelenting assault on health. Ample evidence implicates genetic factors in determining susceptibility although the identities of the genes and alleles have remained elusive. Genome-wide linkage efforts in diverse populations have been modestly successful in identifying regions harboring susceptibility loci, but have led to the identification of only one locus, calpain-10. Understanding the full array of genetic variation contributing to type 2 diabetes may ultimately require examination of all genes in the genome. It certainly will require comprehensive evaluation of the key genes involved in glucose homeostasis and related pathways. To this end, we have identified 500 genes most likely to influence diabetes risk. This group could represent the majority of potential diabetes genes. Evaluation of the contribution of these genes requires typing 10 to 15 SNPs in each to capture their full haplotype diversity. These studies are a necessary complement to the burgeoning genome-wide association studies (including our own) that are being performed in the context of diabetes susceptibility. Specifically, we propose:
Aim 1. To determine the impact of genetic variation at 500 type 2 diabetes candidate genes on risk in 500 cases and a representative cohort of 500 Mexican Americans from Starr County, Texas;
Aim 2. To test for replication of significant findings from Aim 1 in a second set of 500 cases and cohort of 500 Mexican Americans from Starr County, Texas;
and Aim 3. To determine the underlying molecular variation responsible for observed associations at the pathway and gene level. DMA and phenotypes are available. We have also completed genome-wide typing using the Affymetrix GeneChip Human Mapping 100K Set on 300 of the type 2 diabetes cases and 300 cohort members that are the focus of Aim 1. In year 1 we will focus on the results from the 100K chip which provides effective coverage of 125 of the genes identified. In years 2 through 4, we will obtain genotyping through Illumina, Inc. at a rate of 125 genes per year. Genes will be examined in the context of biochemical pathways to test that the array of variation in a pathway differs between cases and the cohort. Genotypes will be posted at www.diabetesgenomics.org to permit replication and application of alternative analytic strategies. Analyses and replication and follow-up genotyping will be shared by groups at the University of Texas Health Science Center at Houston headed by Dr. Craig L. Hanis and the University of Chicago headed by Dr. Graeme I. Bell. Genotyping our extensive sample resource will permit identification of key diabetes susceptibility genes whose variation has been """"""""permissive"""""""" to the last century's environmental changes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK073541-04
Application #
7919980
Study Section
Kidney, Nutrition, Obesity and Diabetes (KNOD)
Program Officer
Mckeon, Catherine T
Project Start
2007-07-01
Project End
2013-06-30
Budget Start
2010-07-01
Budget End
2013-06-30
Support Year
4
Fiscal Year
2010
Total Cost
$607,699
Indirect Cost
Name
University of Texas Health Science Center Houston
Department
Genetics
Type
Schools of Public Health
DUNS #
800771594
City
Houston
State
TX
Country
United States
Zip Code
77225
Konigorski, Stefan; Wang, Yuan; Cigsar, Candemir et al. (2018) Estimating and testing direct genetic effects in directed acyclic graphs using estimating equations. Genet Epidemiol 42:174-186
Chen, Han; Cade, Brian E; Gleason, Kevin J et al. (2018) Multiethnic Meta-Analysis Identifies RAI1 as a Possible Obstructive Sleep Apnea-related Quantitative Trait Locus in Men. Am J Respir Cell Mol Biol 58:391-401
Graff, Mariaelisa; Emery, Leslie S; Justice, Anne E et al. (2017) Genetic architecture of lipid traits in the Hispanic community health study/study of Latinos. Lipids Health Dis 16:200
Konigorski, Stefan; Yilmaz, Yildiz E; Pischon, Tobias (2017) Comparison of single-marker and multi-marker tests in rare variant association studies of quantitative traits. PLoS One 12:e0178504
Manning, Alisa (see original citation for additional authors) (2017) A Low-Frequency Inactivating AKT2 Variant Enriched in the Finnish Population Is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk. Diabetes 66:2019-2032
Cade, Brian E; Chen, Han; Stilp, Adrienne M et al. (2016) Genetic Associations with Obstructive Sleep Apnea Traits in Hispanic/Latino Americans. Am J Respir Crit Care Med 194:886-897
McCarthy, Shane; Das, Sayantan; Kretzschmar, Warren et al. (2016) A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet 48:1279-83
Engelman, Corinne D; Greenwood, Celia M T; Bailey, Julia N et al. (2016) Genetic Analysis Workshop 19: methods and strategies for analyzing human sequence and gene expression data in extended families and unrelated individuals. BMC Proc 10:67-70
Hanis, Craig L; Redline, Susan; Cade, Brian E et al. (2016) Beyond type 2 diabetes, obesity and hypertension: an axis including sleep apnea, left ventricular hypertrophy, endothelial dysfunction, and aortic stiffness among Mexican Americans in Starr County, Texas. Cardiovasc Diabetol 15:86
Fuchsberger, Christian (see original citation for additional authors) (2016) The genetic architecture of type 2 diabetes. Nature 536:41-47

Showing the most recent 10 out of 18 publications